OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 13 — Jun. 22, 2009
  • pp: 11066–11076

Optimized grating coupler with fully etched slots

Bernd Schmid, Alexander Petrov, and Manfred Eich  »View Author Affiliations


Optics Express, Vol. 17, Issue 13, pp. 11066-11076 (2009)
http://dx.doi.org/10.1364/OE.17.011066


View Full Text Article

Enhanced HTML    Acrobat PDF (798 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A grating coupler with fully etched slots is optimized for fiber coupling into SOI slab waveguides. Such coupler can be produced in one lithography step together with other SOI components. Theoretical maximal coupling efficiency of 49% is demonstrated with a 3dB bandwidth of 35nm. Strong reflection from the fully etched grating was avoided through an antireflection interface. Constructive interference is used to decrease radiation into the substrate and the filling factor is optimized for optimal power coupling into the fiber mode. It was also demonstrated, that the chirped grating approach is inapplicable for fully etched gratings.

© 2009 OSA

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(130.0250) Integrated optics : Optoelectronics
(130.3120) Integrated optics : Integrated optics devices

ToC Category:
Integrated Optics

History
Original Manuscript: March 2, 2009
Revised Manuscript: May 8, 2009
Manuscript Accepted: June 9, 2009
Published: June 18, 2009

Citation
Bernd Schmid, Alexander Petrov, and Manfred Eich, "Optimized grating coupler with fully etched slots," Opt. Express 17, 11066-11076 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-13-11066


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Lipson, “Guiding, modulating, and emitting light on silicon-challenges and opportunities,” J. Lightwave Technol. 23(12), 4222–4238 (2005). [CrossRef]
  2. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. van Campenhout, P. Bienstman, and D. van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23(1), 401–412 (2005). [CrossRef]
  3. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003). [CrossRef] [PubMed]
  4. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 mu m square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002). [CrossRef]
  5. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. van Daele, I. Moerman, S. Verstuyft, K. de Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002). [CrossRef]
  6. D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29(23), 2749–2751 (2004). [CrossRef] [PubMed]
  7. F. van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. van Thourhout, T. E. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. Lightwave Technol. 25(1), 151–156 (2007). [CrossRef]
  8. J. V. Galan, P. Sanchis, J. Blasco, and J. Marti, “Study of High Efficiency Grating Couplers for Silicon-Based Horizontal Slot Waveguides,” IEEE Photon. Technol. Lett. 20(12), 985–987 (2008). [CrossRef]
  9. G. Roelkens, D. van Thourhout, and R. Baets, “High efficiency Silicon-on-Insulator grating coupler based on a poly-Silicon overlay,” Opt. Express 14(24), 11622–11630 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-24-11622 . [CrossRef] [PubMed]
  10. G. Roelkens, D. Vermeulen, D. van Thourhout, R. Baets, S. Brision, P. Lyan, P. Gautier, and J. M. Fédéli, “High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit,” Appl. Phys. Lett. 92(13), 131101 (2008). [CrossRef]
  11. G. Roelkens, D. Vermeulen, D. van Thourhout, R. Baets, S. Brision, P. Lyan, P. Gautier, and J. M. Fedeli, “High efficiency SOI fiber-to-waveguide grating couplers fabricated using CMOS technology,” in Integrated Photonics and Nanophotonics Research and Applications, (Optical Society of America, 2008) paper IME3, http://www.opticsinfobase.org/abstract.cfm?URI=IPNRA-2008-IME3
  12. B. Wang, J. Jiang, and G. Nordin, “Compact slanted grating couplers,” Opt. Express 12(15), 3313–3326 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-15-3313 . [CrossRef] [PubMed]
  13. L. Vivien, D. Pascal, S. Lardenois, D. MarTis-Morini, E. Cassan, F. Grillot, S. Laval, J. M. Fedeli, and L. El Melhaoui, “Light injection in SOI microwaveguides using high-efficiency grating couplers,” J. Lightwave Technol. 24(10), 3810–3815 (2006). [CrossRef]
  14. Available at, www.cst.com .
  15. T. Weiland, “Time domain electromagnetic field computation with finite difference methods,” Int. J. Numer. Model. 9(4), 295–319 (1996). [CrossRef]
  16. M. Clemens, and T. Weiland, “Discrete electromagnetism with the finite integration technique,” in Geometric Methods for Computational Electromagnetics, PIER. 32, F. L. Teixeira, J. A. Kong, eds., (EMW Publishing, 2001) 65–87.
  17. T. Suhara and H. Nishihara, “Integrated optics components and devices using periodic structures,” IEEE J. Quantum Electron. 22(6), 845–867 (1986). [CrossRef]
  18. R. M. Emmons and D. G. Hall, “Buried-oxide silicon-on-insulator structures. II. Waveguide gratingcouplers,” IEEE J. Quantum Electron. 28(1), 164–175 (1992). [CrossRef]
  19. D. Gerace and L. C. Andreani, “Disorder-induced losses in photonic crystal waveguides with line defects,” Opt. Lett. 29(16), 1897–1899 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited