OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 14 — Jul. 6, 2009
  • pp: 11246–11258

Theory for n-type doped, tensile-strained Ge-SixGeySn1-x-y quantum-well lasers at telecom wavelength

Guo-En Chang, Shu-Wei Chang, and Shun Lien Chuang  »View Author Affiliations


Optics Express, Vol. 17, Issue 14, pp. 11246-11258 (2009)
http://dx.doi.org/10.1364/OE.17.011246


View Full Text Article

Enhanced HTML    Acrobat PDF (548 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and develop a theoretical gain model for an n-doped, tensile-strained Ge-Si x Ge y Sn1-x-y quantum-well laser. Tensile strain and n doping in Ge active layers can help achieve population inversion in the direct conduction band and provide optical gain. We show our theoretical model for the bandgap structure, the polarization-dependent optical gain spectrum, and the free-carrier absorption of the n-type doped, tensile-strained Ge quantum-well laser. Despite the free-carrier absorption due to the n-type doping, a significant net gain can be obtained from the direct transition. We also present our waveguide design and calculate the optical confinement factors to estimate the modal gain and predict the threshold carrier density.

© 2009 Optical Society of America

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(140.5960) Lasers and laser optics : Semiconductor lasers
(230.5590) Optical devices : Quantum-well, -wire and -dot devices

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: March 20, 2009
Revised Manuscript: June 18, 2009
Manuscript Accepted: June 18, 2009
Published: June 22, 2009

Citation
Guo-En Chang, Shu-Wei Chang, and Shun L. Chuang, "Theory for n-type doped, tensile-strained Ge–SixGeySn1−x−y quantum-well lasers at telecom wavelength," Opt. Express 17, 11246-11258 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-14-11246


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. O. Boyraz and B. Jalali, "Demonstration of a silicon Raman laser," Opt. Express 12, 5269-5273 (2004). [CrossRef] [PubMed]
  2. L. T. Canham, "Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers," Appl. Phys. Lett. 57, 1046-1048 (1990). [CrossRef]
  3. H. Ennen, J. Schneider, G. Pomrenke, and A. Axmann, "1.54-μm luminescence of erbium-implanted III-V semiconductors and silicon," Appl. Phys. Lett. 43, 943-945 (1983). [CrossRef]
  4. R. A. Soref and L. Friedman, "Direct-gap Ge/GeSn/Si and GeSn/Ge/Si heterostructure," Superlattices Microstruct. 14, 189-193 (1993). [CrossRef]
  5. J. Menéndeza and J. Kouvetakis, "Type-I Ge/Ge1−x−ySixSny strained-layer heterostructures with a direct Ge bandgap," Appl. Phys. Lett. 85, 1175-1177 (2004). [CrossRef]
  6. S. W. Chang and S. L. Chuang, "Theory of optical gain of Ge-SixGeySn1−x−y quantum-well lasers," IEEE J. Quantum Electron. 43, 249-256 (2007). [CrossRef]
  7. J. Kouvetakis, J. Tolle, J. Menéndeza, and V. R. D’Costa, "Advances in Si-Ge-Sn materials science and technology," in Proceedings of IEEE 4th International Conference on Group IV Photonics (Institute of Electrical and Electronics Engineers, Tokyo, Japan, 2007), pp. 1-3.
  8. J. Kouvetakis and A. V. G. Chizmeshya, "New classes of Si-based photonic materials and device architectures via designer molecular routes," J. Mater. Chem. 17, 1649-1655 (2007). [CrossRef]
  9. J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, "Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si," Opt. Express 15, 11272-11277 (2007). [CrossRef] [PubMed]
  10. N. D. Zakharov, V. G. Talalaev, P. Werner, A. A. Tonkikh, and G. E. Cirlin, "Room-temperature light emission from a highly strained Si/Ge superlattice," Appl. Phys. Lett. 83, 3084-3086 (2003). [CrossRef]
  11. C. G. Van de Walle, "Band lineups and deformation potentials in the model-solid theory," Phys. Rev. B 39, 1871-1883 (1989). [CrossRef]
  12. S. L. Chuang, Physics of Photonic Devices, 2nd Ed. (Wiley, New York, 2009).
  13. Y. H. Li, X. G. Gong, and S. H. Wei, "Ab initio all-electron calculation of absolute volume deformation potentials of IV-IV, III-V, and II-VI semiconductors: The chemical trends," Phys. Rev. B 73, 245206 (2006). [CrossRef]
  14. T. Brudevoll, D. S. Citrin, M. Cardona, and N. E. Christensen, "Electronic structure of 〈-Sn and its dependence on hydrostatic strain," Phys. Rev. B 48, 8629-8635 (1993). [CrossRef]
  15. V. R. D’Costa, Y. Y. Fang, J. Tolleb, J. Kouvetakis, and J. Menéndeza, "Direct absorption edge in GeSiSn alloys," International Conference on the Physics of Semiconductors, Rio de Janeiro, Brazil, 2008.
  16. T. Keating, S. H. Park, J. Minch, X. Jin, S. L. Chuang, and T. Tanbun-Ek, "Optical gain measurements based on fundamental properties and comparison with many-body theory," J. Appl. Phys. 86, 2945-2952 (1999). [CrossRef]
  17. J. Minch, S. H. Park, T. Keating, and S. L. Chuang, "Theory and experiment of In1−xGaxAsyP1−y and In1−x−yGaxAlyAs long-wavelength strained quantum-well lasers," IEEE J. Quantum Electron. 35, 771-782 (1999). [CrossRef]
  18. R. A. Soref and J. P. Lorenzo, "All-silicon active and passive guided-wave components for λ = 1.3 and λ= 1.6μm," IEEE J. Quantum Electron. QE-22, 873-879 (1986). [CrossRef]
  19. C. Hilsum, "Simple empirical relationship between mobility and carrier concentration," Electron. Lett. 10, 259-260 (1974). [CrossRef]
  20. B. G. Streetman, Solid State Electronic Devices, 4th Ed. (Prentice-Hall, New Jersey, 1995).
  21. S. M. Sze and J. C. Irvin, "Resistivity, mobility and impurity levels in GaAs, Ge, and Si at 300◦K," Solid State Electron. 11, 599-602 (1968). [CrossRef]
  22. J. I. Pankove, "Optical absorption by degenerate germanium," Phys. Rev. Lett. 4, 454-455 (1960). [CrossRef]
  23. J. I. Pankove, "Properties of heavily doped germanium," Prog. Semicond. 9, 48 (1965).
  24. T. D. Visser, H. Blok, B. Demeulenaere, and D. Lenstra, "Confinement factors and gain in optical amplifiers," IEEE J. Quantum Electron. 33, 1763-1766 (1997). [CrossRef]
  25. A. V. Maslov, and C. Z. Ning, "Modal gain in a semiconductor nanowire laser with anisotropic bandstructure," IEEE J. Quantum Electron. 40, 1389-1397 (2004). [CrossRef]
  26. S. W. Chang and S. L. Chuang, "Fundamental formulation for plasmonic nanolasers," IEEE J. Quantum Electron. (in press).
  27. C. Hass, "Infrared absorption in heavily doped n-type germanium," Phys. Rev. 125, 1965-1971 (1962). [CrossRef]
  28. R. E. Lindquist and A. W. Ewald, "Optical constants of single-crystal gray tin in the infrared," Phys. Rev. 135, A191-A194 (1964). [CrossRef]
  29. D. F. Edwards, "Silicon (Si)," in Handbook of Optical Constants of Solids, E.D. Palik, ed. (Academic, Orlando, Florida, 1985), pp. 547-569.
  30. R. F. Potter, "Germanium (Ge)," in Handbook of Optical Constants of Solids, E.D. Palik, ed. (Academic, Orlando, Florida, 1985), pp. 465-478.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited