OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 14 — Jul. 6, 2009
  • pp: 11315–11320

Surface plasmon converging and diverging properties modulated by polymer refractive structures on metal films

D. G. Zhang, X.-C. Yuan, J. Bu, G. H. Yuan, Q. Wang, J. Lin, X. J. Zhang, P. Wang, H. Ming, and T. Mei  »View Author Affiliations

Optics Express, Vol. 17, Issue 14, pp. 11315-11320 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (507 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Polymer refractive microstructures are fabricated on metallic thin films and employed to modulate surface plasmons (SPs) propagations in a refractive manner. SP waves converging with different focal lengths and diverging effects are realized by the refractive structures. Authors investigated the modulation effect on SP waves as a function of different thicknesses and different shapes of the polymer micro-structures based on the effective refractive index model, where imaging properties of the SPs are observed experimentally by detecting the leaky radiation intensity of the SPs.

© 2009 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(120.5060) Instrumentation, measurement, and metrology : Phase modulation
(240.6680) Optics at surfaces : Surface plasmons
(240.6690) Optics at surfaces : Surface waves

ToC Category:
Optics at Surfaces

Original Manuscript: March 18, 2009
Revised Manuscript: May 15, 2009
Manuscript Accepted: May 27, 2009
Published: June 22, 2009

D. G. Zhang, X.-C. L. Yuan, J. Bu, G. H. Yuan, Q. Wang, J. Lin, X. J. Zhang, P. Wang, H. Ming, and T. Mei, "Surface plasmon converging and diverging properties modulated by polymer refractive structures on metal films," Opt. Express 17, 11315-11320 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830, (2003). [CrossRef] [PubMed]
  2. E. Ozbay, "Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions," Science 311, 189-193 (2006). [CrossRef] [PubMed]
  3. V. S. Volkov, S. I. Bozhevolnyi, E. Devaux, and T. W. Ebbesen, "Compact gradual bends for channel plasmon polaritons," Opt. Express 14, 4494-4503 (2006). [CrossRef] [PubMed]
  4. J. C. Weeber, M. U. Gonzalez, A. L. Baudrion, and A. Dereux, "Surface plasmon routing along right angle bent metal strips," Appl. Phys. Lett. 87, 221101 (2005). [CrossRef]
  5. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, "Channel plasmon subwavelength waveguide components including interferometers and ring resonators," Nature 440, 508-511 (2006). [CrossRef] [PubMed]
  6. T. Holmgaard, S. I. Bozhevolnyi, M. Laurent, and D. Alain, "Dielectric-loaded surface plasmon-polariton waveguides at telecommunication wavelengths: Excitation and characterization," Appl. Phys. Lett. 92, 011124 (2008). [CrossRef]
  7. B. Steinberger, A. Hohenau, H. Ditlbacher, A. L. Stepanov, A. Drezet, F. R. Aussenegg, A. Leitner, and J. R. Krenn, "Dielectric stripes on gold as surface plasmon waveguides," Appl. Phys. Lett. 88, 094104 (2006). [CrossRef]
  8. M. U. Gonzalez, J. C. Weeber, A. L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, "Design, near-field characterization, and modeling of 45o surface-plasmon Bragg mirrors," Phy. Rev. B 73, 155416 (2006). [CrossRef]
  9. H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, "Two-dimensional optics with surface plasmon polaritons," Appl. Phy. Lett. 81, 1762-1764 (2002). [CrossRef]
  10. I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, "Surface plasmon dielectric waveguides," Appl. Phys. Lett. 87, 241106 (2005). [CrossRef]
  11. I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, "Magnifying superlens in the visible frequency range," Science 315, 1699-1701 (2007). [CrossRef] [PubMed]
  12. I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, "Imaging and focusing properties of plasmonic metamaterial devices," Phys. Rev. B 76, 205424 (2007). [CrossRef]
  13. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, "Subwavelength Focusing and Guiding of Surface Plasmons," Nano. Lett. 5, 1399-1402 (2005). [CrossRef] [PubMed]
  14. A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, "Dielectric optical elements for surface plasmons," Opt. Lett. 30, 893-895 (2005). [CrossRef] [PubMed]
  15. S. Griesing, A. Englisch, and U. Hartmann, "Fabrication and SNOM characterization of plasmon-optical elements," J. Phy: Conference Series, 364 (2007). [CrossRef]
  16. S. Griesing, A. Englisch, and U. Hartmann, "Refractive and reflective behavior of polymer prisms used for surface plasmon guidance," Opt. Lett. 33, 575-577 (2008). [CrossRef] [PubMed]
  17. H. Rather, Surface Plasmons on Smooth and Rough Surfaces and Gratings (Springer 1988).
  18. A. Bouhelier, and G. P. Wiederrecht, "Surface plasmon rainbow jets," Opt. Lett. 30, 884-886 (2005). [CrossRef] [PubMed]
  19. Rashid Zia, Mark D. Selker, and Mark L. Brongersma, "Leaky and bound modes of surface plasmon waveguides," Phy. Rev. B 71, 165431 (2005). [CrossRef]
  20. Q. Wang, X. Yuan, P. Tan, and D. Zhang, "Phase modulation of surface plasmon polaritonsby surface relief dielectric structures," Opt. Express 16, 19271-19276 (2008). [CrossRef]
  21. A. V. Krasavin and A. V. Zayats, "Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides," Phys. Rev. B. 78, 045425 (2008). [CrossRef]
  22. A. V. Krasavin and A. V. Zayats, "Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides," Appl. Phy. Lett. 90, 211101 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited