OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 14 — Jul. 6, 2009
  • pp: 11440–11449

Efficient entanglement distribution over 200 kilometers

J. F. Dynes, H. Takesue, Z. L. Yuan, A. W. Sharpe, K. Harada, T. Honjo, H. Kamada, O. Tadanaga, Y. Nishida, M. Asobe, and A. J. Shields  »View Author Affiliations

Optics Express, Vol. 17, Issue 14, pp. 11440-11449 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (272 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Here we report the first demonstration of entanglement distribution over a record distance of 200 km which is of sufficient fidelity to realize secure communication. In contrast to previous entanglement distribution schemes, we use detection elements based on practical avalanche photodiodes (APDs) operating in a self-differencing mode. These APDs are low-cost, compact and easy to operate requiring only electrical cooling to achieve high single photon detection efficiency. The self-differencing APDs in combination with a reliable parametric down-conversion source demonstrate that entanglement distribution over ultra-long distances has become both possible and practical. Consequently the outlook is extremely promising for real world entanglement-based communication between distantly separated parties.

© 2009 OSA

OCIS Codes
(060.5565) Fiber optics and optical communications : Quantum communications
(270.5565) Quantum optics : Quantum communications
(270.5568) Quantum optics : Quantum cryptography
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: April 2, 2009
Revised Manuscript: June 8, 2009
Manuscript Accepted: June 9, 2009
Published: June 23, 2009

J. F. Dynes, H. Takesue, Z. L. Yuan, A. W. Sharpe, K. Harada, T. Honjo, H. Kamada, O. Tadanaga, Y. Nishida, M. Asobe, and A. J. Shields, "Efficient entanglement distribution over 200 kilometers," Opt. Express 17, 11440-11449 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47(10), 777–780 (1935). [CrossRef]
  2. J. S. Bell, “On the Einstein-Podolsky-Rosen paradox,” Physics (Long Island City, N. Y.) 1, 195–200 (1964).
  3. C. H. Bennett and D. P. DiVincenzo, “Quantum information and computation,” Nature 404(6775), 247–255 (2000). [CrossRef]
  4. M. A. Nielson, and I. L. Chuang, Quantum computation and quantum information, (Cambridge University Press, 2000).
  5. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum Cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002). [CrossRef]
  6. SeeR. Thew and N. Gisin, “Quantum communication,” Nat. Photon. 1, 165–171 (2007) for a review. [CrossRef]
  7. A. Acín, N. Gisin, and L. Masanes, “From Bell’s theorem to secure quantum key distribution,” Phys. Rev. Lett. 97(12), 120405 (2006). [CrossRef]
  8. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67(6), 661–663 (1991). [CrossRef]
  9. C. H. Bennett, G. Brassard, and N. D. Mermin, “Quantum cryptography without Bell's Theorem,” Phys. Rev. Lett. 68(5), 557–559 (1992). [CrossRef]
  10. W. Tittel, J. Brendel, H. Zbinden, and N. Gisin, “Quantum cryptography using entangled photons in energy-time bell states,” Phys. Rev. Lett. 84(20), 4737–4740 (2000). [CrossRef]
  11. R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, H. Weier, T. Scheidl, M. Lindenthal, B. Blauensteiner, T. Jennewein, J. Perdigues, P. Trojek, B. Oemer, M. Fuerst, M. Meyenburg, J. Rarity, Z. Sodnik, C. Barbieri, H. Weinfurter, and A. Zeilinger, “Entanglement based quantum communication over 144km,” Nat. Phys. 3(7), 481–486 (2007). [CrossRef]
  12. A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli, R. Prevedel, T. Scheidl, F. Tiefenbacher, T. Jennewein, and A. Zeilinger, “High-fidelity transmission of entanglement over a high-loss freespace channel,” http://arxiv.org/abs/0902.2015 .
  13. M. Pfennigbauer, M. Aspelmeyer, W. Leeb, G. Baister, T. Dreischer, T. Jennewein, G. Neckamm, J. Perdigues, H. Weinfurter, and A. Zeilinger, “Satellite-based quantum communication terminal employing state-of-the-art technology,” J. Opt. Netw. 4(9), 549–560 (2005). [CrossRef]
  14. H. Hubel, M. R. Vanner, T. Lederer, B. Blauensteiner, T. Lorünser, A. Poppe, and A. Zeilinger, “High-fidelity transmission of polarization encoded qubits from an entangled source over 100km of fiber,” Opt. Express 15(12), 7853–7862 (2007). [CrossRef]
  15. H. C. Lim, A. Yoshizawa, H. Tsuchida, and K. Kikuchi, “Distribution of polarization-entangled photon pairs produced via spontaneous parametric down-conversion within a local-area fiber network: Theoretical model and experiment,” Opt. Express 16(19), 14512–14523 (2008). [CrossRef]
  16. C. Liang, K. F. Lee, J. Chen, and P. Kumar, “Distribution of fiber-generated polarization entangled photon-pairs over 100 km of standard fiber in OC-192 WDM environment,” post deadline paper, Optical Fiber Communications Conference (OFC’2006), paper PDP35.
  17. T. Honjo, H. Takesue, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, and K. Inoue, “Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors,” Opt. Express 15(21), 13957–13964 (2007). [CrossRef]
  18. Q. Zhang, H. Takesue, S. W. Nam, C. Langrock, X. Xie, B. Baek, M. M. Fejer, and Y. Yamamoto, “Distribution of time-energy entanglement over 100 km fiber using superconducting single-photon detectors,” Opt. Express 16(8), 5776–5781 (2008). [CrossRef]
  19. H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Phot. 1(6), 343–348 (2007). [CrossRef]
  20. T. Honjo, S. W. Nam, H. Takesue, Q. Zhang, H. Kamada, Y. Nishida, O. Tadanaga, M. Asobe, B. Baek, R. Hadfield, S. Miki, M. Fujiwara, M. Sasaki, Z. Wang, K. Inoue, and Y. Yamamoto, “Long-distance entanglement-based quantum key distribution over optical fiber,” Opt. Express 16(23), 19118–19126 (2008). [CrossRef]
  21. Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, and A. J. Shields, “High speed single photon detection in the near infrared,” Appl. Phys. Lett. 91(4), 041114 (2007). [CrossRef]
  22. A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz decoy quantum key distribution with 1Mbit/s secure key rate,” Opt. Express 16(23), 18790–18979 (2008). [CrossRef]
  23. J. F. Dynes, Z. L. Yuan, A. W. Sharpe, and A. J. Shields, “A high speed, post-processing free, random number generator,” Appl. Phys. Lett. 93, 031109 (2008). [CrossRef]
  24. B. E. Kardynal, Z. L. Yuan, and A. J. Shields, “An avalanche-photodiode-based photon-number-resolving detector,” Nat. Photonics 2(7), 425–428 (2008). [CrossRef]
  25. J. D. Franson, “Bell inequality for position and time,” Phys. Rev. Lett. 62(19), 2205–2208 (1989). [CrossRef]
  26. T. Honjo, H. Takesue, and K. Inoue, “Generation of energy-time entangled photon pairs in 1.5μm band with periodically poled lithium niobate waveguide,” Opt. Express 15(4), 1679–1683 (2007). [CrossRef]
  27. H. de Riedmatten, I. Marcikic, V. Scarani, W. Tittel, H. Zbinden, and N. Gisin, “Tailoring photonic entanglement in high-dimensional Hilbert spaces,” Phys. Rev. A 69(5), 050304 (2004). [CrossRef]
  28. H. Takesue and K. Inoue, “Generation of 1.5μm time-bin entanglement using spontaneous fiber four-wave mixing and planar-lightwave circuit interferometers,” Phys. Rev. A 72(4), 041804 (2005). [CrossRef]
  29. Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz quantum key distribution with InGaAs avalanche photodiodes,” Appl. Phys. Lett. 92(20), 201104 (2008). [CrossRef]
  30. Q. Zhang, C. Langrock, H. Takesue, X. Xie, M. Fejer, and Y. Yamamoto, “Generation of 10-GHz clock sequential time-bin entanglement,” Opt. Express 16(5), 3293–3298 (2008). [CrossRef]
  31. By shifting the phase of the fixed temperature PLC by π/2 the non-orthogonal basis was measured.
  32. I. Marcikic, H. de Riedmatten, W. Tittel, V. Scarani, H. Zbinden, and N. Gisin, “Time-bin entangled qubits for quantum communication created by femtosecond pulses,” Phys. Rev. A 66(6), 062308 (2002). [CrossRef]
  33. The observed correlation in the experiment, C is connected to the visibility V thus: C=Vcos2(f) where f is a function of signal and idler phases, f(θs,θi). We use the Clauser-Horne-Shimony-Holt Bell inequality [‎34] with associated Bell parameter S=|C(θs,θi)−C(θs,θ′i)+C(θ′s,θ′i)+C(θ′s,θi)|≤2. Quantum-mechanically, this inequality can be violated with maximum violation of S=22. The violation of the Bell CHSH inequality in terms of visibility is hence V>1/2.
  34. J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden variable theories,” Phys. Rev. Lett. 23(15), 880–884 (1969). [CrossRef]
  35. The factor of two variation in error bar values between the two basis measurements arises from statistical variations from one experimental run to another.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited