OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 14 — Jul. 6, 2009
  • pp: 11495–11504

Surface plasmon-enhanced energy transfer in an organic light-emitting device structure

Ki Youl Yang, Kyung Cheol Choi, and Chi Won Ahn  »View Author Affiliations

Optics Express, Vol. 17, Issue 14, pp. 11495-11504 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (2804 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a surface plasmon-mediated energy transfer based on an organic light-emitting device structure. In order to localize surface plasmons, silver nano clusters were deposited thermally close to the cathode with a 1-nm-thick LiF spacer. It was shown that the surface plasmon formed on the silver nano cluster provides a strong donor decay channel and increases the donor-acceptor dipolar interaction. Thus, photoluminescence results displayed 3.5-fold enhanced acceptor emission intensity, compared with those of sample which has no Ag nano cluster.

© 2009 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(250.3680) Optoelectronics : Light-emitting polymers

ToC Category:
Optics at Surfaces

Original Manuscript: April 9, 2009
Revised Manuscript: May 29, 2009
Manuscript Accepted: June 19, 2009
Published: June 24, 2009

Ki Youl Yang, Kyung Cheol Choi, and Chi Won Ahn, "Surface plasmon-enhanced energy transfer in an organic light-emitting device structure," Opt. Express 17, 11495-11504 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003). [CrossRef] [PubMed]
  2. S. Nie, and S. R. Emory, "Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering," Science 275, 1102-1106 (1997). [CrossRef] [PubMed]
  3. N. Félidj, J. Aubard, G. Lévi, J. R. Krenn, A. Hohenau, G. Schider, A. Leitner, and F. R. Aussenegg, "Optimized surface-enhanced Raman scattering on gold nanoparticle arrays," Appl. Phys. Lett. 82, 3095-3097 (2003). [CrossRef]
  4. P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and Quenching of Single-Molecule Fluorescence," Phys. Rev. Lett. 96, 11302-11303 (2006). [CrossRef]
  5. H. Ditlbacher, J. R. Krenn, N. Félidj, B. Lamprecht, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, "Fluorescence imaging of surface plasmon fields," Appl. Phys. Lett. 80, 404-406 (2002). [CrossRef]
  6. B. P. Rand, P. Peumans, and S. R. Forrest, "Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters," J. Appl. Phys. 96, 7519-7526 (2004). [CrossRef]
  7. E. Ozbay, "Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions," Science 311, 189-193 (2006). [CrossRef] [PubMed]
  8. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007).
  9. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University Press, New York, 2006).
  10. T. Förster, "Intermolecular energy transference and fluorescence," Annalen der Physik 2, 55-75 (1948). [CrossRef]
  11. T. Förster, "Transfer mechanisms of electronic excitation," Discuss. Faraday Soc. 27, 7-17 (1959).
  12. C. Sönnichsen, B. M. Reinhard, J. Liphardt, and A. P. Alivisatos, "A molecular ruler based on plasmon coupling of single gold and silver nanoparticles," Nat. Biotech. 23, 741-745 (2005). [CrossRef]
  13. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, "Biosensing with plasmonic nanosensors," Nat. Mater. 7, 442-453 (2008). [CrossRef] [PubMed]
  14. M. Hopmeier, W. Guss, M. Deussen, E. O. Gübel, and R. F. Mahrt, "Enhanced Dipole-Dipole Interaction in a Polymer Microcavity," Phys. Rev. Lett. 82, 4118-4121 (1999). [CrossRef]
  15. D. K. Kim, K. Kerman, M. Saito, R. R. Sathuluri, T. Endo, S. Yamamura, Y. S. Kwon, and E. Tamiya, "Label-free DNA biosensor based on localized surface plasmon resonance coupled with interferometry," Anal. Chem. 79, 1855-1864 (2007). [CrossRef] [PubMed]
  16. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, "Surface-plasmon-enhanced light emitters based on InGaN quantum wells," Nat. Mat. 3, 601-605 (2004). [CrossRef]
  17. T. D. Neal, K. Okamoto, and A. Scherer, "Surface plasmon enhanced emission from dye doped polymer layers," Opt. Express 13, 5522-5527 (2005). [CrossRef] [PubMed]
  18. J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, "Strong Coupling between Surface Plasmons and Excitons in an Organic Semiconductor," Phys. Rev. Lett. 93, 036404 (2004). [CrossRef] [PubMed]
  19. M. K. Kwon, J. Y. Kim, B. H. Kim, I. K. Park, C. Y. Cho, C. C. Byeon, and S. J. Park, "Surface-Plasmon-Enhanced Light-Emitting Diodes," Adv. Mater. 20, 1253-1257 (2008). [CrossRef]
  20. W.-H. Chuang, J.-Y. Wang, C. C. Yang, and Y.-W. Kiang, "Study on the decay mechanisms of surface plasmon coupling features with a light emitter through time-resolved simulations," Opt. Express 17, 104-116 (2009). [CrossRef] [PubMed]
  21. P. Andrew and W. L. Barnes, "Förster Energy Transfer in an Optical Microcavity," Science 290, 785-788 (2000). [CrossRef] [PubMed]
  22. K. Okamoto, I. Niki, A. Scherer, Y. Narukawa, T. Mukai, and Y. Kawakami, "Surface plasmon enhanced spontaneous emission rate of InGaN/GaN quantum wells probed by time-resolved photoluminescence spectroscopy," Appl. Phys. Lett. 87, 071102-071103 (2005). [CrossRef]
  23. K. Y. Yang, K. C. Choi, and C. W. Ahn, "Surface plasmon-enhanced spontaneous emission rate in an organic light-emitting device structure: Cathode structure for plasmonic application," Appl. Phys. Lett. 94, 173301-173303 (2009). [CrossRef]
  24. P. Andrew and W. L. Barnes, "Energy Transfer Across a Metal Film Mediated by Surface Plasmon Polaritons," Science 306, 1002-1005 (2004). [CrossRef] [PubMed]
  25. V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, S. R. Forrest, Y. You, and M. E. Thompson, "Study of lasing action based on Förster energy transfer in optically pumped organic semiconductor thin films," J. Appl. Phys. 84, 4096-4108 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited