OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 14 — Jul. 6, 2009
  • pp: 11565–11581

A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part II: Stimulated Raman Scattering

Mark D. Turner, Tanya M. Monro, and Shahraam Afshar V.  »View Author Affiliations


Optics Express, Vol. 17, Issue 14, pp. 11565-11581 (2009)
http://dx.doi.org/10.1364/OE.17.011565


View Full Text Article

Enhanced HTML    Acrobat PDF (188 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The significance of full vectorial pulse propagation through emerging waveguides has not been investigated. Here we report the development of a generalised vectorial model of nonlinear pulse propagation due to the effects of Stimulated Raman Scattering (SRS) in optical waveguides. Unlike standard models, this model does not use the weak guidance approximation, and thus accurately models the modal Raman gain of optical waveguides in the strong guidance regime. Here we develop a vectorial-based nonlinear Schrödinger Eq. (VNSE) to demonstrate how the standard model fails in certain regimes, with up to factors of 2.5 enhancement in Raman gain between the VNSE and the standard model. Using the VNSE we are able to explore opportunities for tailoring of the modal Raman gain spectrum to achieve effects such as gain flattening through design of the optical fiber.

© 2009 Optical Society of America

OCIS Codes
(190.4360) Nonlinear optics : Nonlinear optics, devices
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5650) Nonlinear optics : Raman effect
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Nonlinear Optics

History
Original Manuscript: May 4, 2009
Revised Manuscript: June 19, 2009
Manuscript Accepted: June 22, 2009
Published: June 25, 2009

Citation
Mark D. Turner, Tanya M. Monro, and Shahraam Afshar V., "A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part II: Stimulated Raman Scattering," Opt. Express 17, 11565-11581 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-14-11565


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Afshar V. and T. Monro, "A full vectorial model for pulse propagation in emerging waveguides with subwavelength structures part I: Kerr nonlinearity," Opt. Express 17(4), 2298-2318 (2009). [CrossRef]
  2. M. Foster, A. Turner, M. Lipson, and A. Gaeta, "Nonlinear optics in photonic nanowires," Opt. Express 16(2), 1300-1320 (2008). [CrossRef]
  3. M. Lamont, C. de Sterke, and B. Eggleton, "Dispersion engineering of highly nonlinear As_2S_3 waveguides for parametric gain and wavelength conversion," Opt. Express 15(15), 9458-9463 (2007). [CrossRef]
  4. H. Ebendorff-Heidepriem, P. Petropoulos, S. Asimakis, V. Finazzi, R. Moore, K. Frampton, F. Koizumi, D. Richardson, and T. Monro, "Bismuth glass holey fibers with high nonlinearity," Opt. Express 12(21), 5082-5087 (2004). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-12-21-5082. [CrossRef]
  5. G. Renversez, B. Kuhlmey, and R. McPhedran, "Dispersion management with microstructured optical fibers: ultraflattened chromatic dispersion with low losses," Opt. Lett. 28(12), 989-991 (2003). URL http://ol.osa.org/abstract.cfm?URI=ol-28-12-989. [CrossRef]
  6. A. Mussot, M. Beaugeois, M. Bouazaoui, and T. Sylvestre, "Tailoring CW supercontinuum generation in microstructured fibers with two-zero dispersion wavelengths," Opt. Express 15(18), 11,553-11,563 (2007). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-15-18-11553.
  7. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78(4), 1135-1184 (2006). [CrossRef]
  8. S. Yiou, P. Delaye, A. Rouvie, J. Chinaud, R. Frey, G. Roosen, P. Viale, S. Février, P. Roy, J. Auguste and J. Blondy, "Stimulated Raman scattering in an ethanol core microstructured optical fiber," Opt. Express 13(12), 4786-4791 (2005). [CrossRef]
  9. S. Atakaramians, S. Afshar V., B. Fischer, D. Abbott, and T. Monro, "Porous fibers: a novel approach to low loss THz waveguides," Opt. Express 16(12), 8845-8854 (2008). [CrossRef]
  10. M. Foster and A. Gaeta, "Ultra-low threshold supercontinuum generation in sub-wavelength waveguides," Opt. Express 12(14), 3137-3143 (2004). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-12-14-3137. [CrossRef]
  11. Y. Lizé, E. Mägi, V. Ta’eed, J. Bolger, P. Steinvurzel, and B. Eggleton, "Microstructured optical fiber photonic wires with subwavelength core diameter," Opt. Express 12(14), 3209-3217 (2004). URL http://www.opticsexpress.org/abstract.cfm?URI=oe-12-14-3209. [CrossRef]
  12. S. Afshar V., S. Warren-Smith, and T. Monro, "Enhancement of fluorescence-based sensing using microstructured optical fibres," Opt. Express 15(26), 17,891-17,901 (2007).
  13. M. Foster, J. Dudley, B. Kibler, Q. Cao, D. Lee, R. Trebino, and A. Gaeta, "Nonlinear pulse propagation and supercontinuum generation in photonic nanowires: experiment and simulation," Appl. Phys. B: Lasers and Optics 81(2), 363-367 (2005). [CrossRef]
  14. Q. Xu, V. Almeida, R. Panepucci, and M. Lipson, "Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material," Opt. Lett. 29(14), 1626-1628 (2004). [CrossRef]
  15. M. Foster, A. Turner, R. Salem, M. Lipson, and A. Gaeta, "Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides," Opt. Express 15(20), 12,949-12,958 (2007).
  16. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, "Guiding and confining light in void nanostructure," Opt. Lett. 29(11), 1209-1211 (2004). URL http://ol.osa.org/abstract.cfm?URI=ol-29-11-1209. [CrossRef]
  17. M. Nagel, A. Marchewka, and H. Kurz, "Low-index discontinuity terahertz waveguides," Opt. Express 14(21), 9944-9954 (2006). [CrossRef]
  18. H. Fukuda, K. Yamada, T. Shoji, M. Takahashi, T. Tsuchizawa, T. Watanabe, J. Takahashi, and S. Itabashi, "Four-wave mixing in silicon wire waveguides," Opt. Express 13(12), 4629-4637 (2005). [CrossRef]
  19. G. Wiederhecker, C. Cordeiro, F. Couny, F. Benabid, S. Maier, J. Knight, C. Cruz, and H. Fragnito, "Field enhancement within an optical fibre with a subwavelength air core," Nature 1(2), 115-118 (2007).
  20. F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, "Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber," Science 298(5592), 399-402 (2002). USA. [CrossRef]
  21. F. Benabid, G. Bouwmans, J. Knight, P. Russell, and F. Couny, "Ultrahigh Efficiency Laser Wavelength Conversion in a Gas-Filled Hollow Core Photonic Crystal Fiber by Pure Stimulated Rotational Raman Scattering in Molecular Hydrogen," Phys. Rev. Lett. 93(12), 123,903 (2004).
  22. S. Konorov, D. Sidorov-Biryukov, A. Zheltikov, I. Bugar, D. ChorvatJr, D. Chorvat, V. Beloglazov, N. Skibina, M. Bloemer, and M. Scalora, "Self-phase modulation of submicrojoule femtosecond pulses in a hollow-core photonic-crystal fiber," Appl. Phys. Lett. 85, 3690 (2004). [CrossRef]
  23. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2007).
  24. C. Headley and G. P. Agrawal, "Unified description of ultrafast stimulated Raman scattering in optical fibers," J. Opt. Soc. Am. B 13(10), 2170-2177 (1996). [CrossRef]
  25. J. Driscoll, X. Liu, S. Yasseri, I. Hsieh, J. Dadap, and R. Osgood, "Large longitudinal electric fields (E_z) in silicon nanowire waveguides," Opt. Express 17(4), 2797-2804 (2009). [CrossRef]
  26. K. Thyagarajan and C. Kakkar, "Novel fiber design for flat gain Raman amplification using single pump and dispersion compensation in S band," J. Lightwave Technol. 22(10), 2279-2286 (2004). [CrossRef]
  27. X. G. Chen, N. C. Panoiu, and R. M. Osgood, "Theory of Raman-mediated pulsed amplification in silicon-wire waveguides," IEEE J. Quantum Electron. 42(1-2), 160-170 (2006). [CrossRef]
  28. J. I. Dadap, N. C. Panoiu, X. G. Chen, I. W. Hsieh, X. P. Liu, C. Y. Chou, E. Dulkeith, S. J. McNab, F. N. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, and R. M. Osgood, "Nonlinear-optical phase modification in dispersion-engineered Si photonic wires," Opt. Express 16(2), 1280-1299 (2008). [CrossRef]
  29. K. Okamoto, Fundamentals of Optical Waveguides (Academic Press, 2006).
  30. B. Kuhlmey, T. White, G. Renversez, D. Maystre, L. Botten, C. de Sterke, and R. McPhedran, "Multipole method for microstructured optical fibers. II. Implementation and results," J. Opt. Soc. Am. B 19(10), 2331-2340 (2002). [CrossRef]
  31. T. White, B. Kuhlmey, R. McPhedran, D. Maystre, G. Renversez, C. de Sterke, and L. Botten, "Multipole method for microstructured optical fibers. I. Formulation," J. Opt. Soc. Am. B 19(10), 2322-2330 (2002). [CrossRef]
  32. A. Snyder and J. Love, Optical waveguide theory (Kluwer Academic Pub, 1983).
  33. A. Kireev and T. Graf, "Vector coupled-mode theory of dielectric waveguides," IEEE J. Quantum Electron. 39(7), 866-873 (2003). [CrossRef]
  34. P. Butcher and D. Cotter, The Elements of Nonlinear Optics (Cambridge University Press, 1990).
  35. Q. Lin, O. J. Painter, and G. P. Agrawal, "Nonlinear optical phenomena in silicon waveguides: Modeling and applications," Opt. Express 15(25), 16,604-16,644 (2007).
  36. R. Hellwarth, "Third-order optical susceptibilities of liquids and solids," Prog. Quantum Electron. 5(1), 2-68 (1977).
  37. A. Efimov, A. Taylor, F. Omenetto, J. Knight, W. Wadsworth, and P. Russell, "Phase-matched third harmonic generation in microstructured fibers," Opt. Express 11(20), 2567-2576 (2003). [CrossRef]
  38. D. Dimitropoulos, V. Raghunathan, R. Claps, and B. Jalali, "Phase-matching and Nonlinear Optical Processes in Silicon Waveguides," Opt. Express 12(1), 149-160 (2004). [CrossRef]
  39. V. Ta’eed, N. Baker, L. Fu, K. Finsterbusch, M. Lamont, D. Moss, H. Nguyen, B. Eggleton, D. Choi, S. Madden and B. Luther-Davies, "Ultrafast all-optical chalcogenide glass photonic circuits," Opt. Express 15(15), 9205-9221 (2007). [CrossRef]
  40. R. Slusher, G. Lenz, J. Hodelin, J. Sanghera, L. Shaw, and I. Aggarwal, "Large Raman gain and nonlinear phase shifts in high-purity As 2 Se 3 chalcogenide fibers," J. Opt. Soc. Am. B 21(6), 1146-1155 (2004). [CrossRef]
  41. V. E. Perlin and H. G. Winful, "Optimal design of flat-gain wide-band fiber Raman amplifiers," J. Lightwave Technol. 20(2), 250-254 (2002). [CrossRef]
  42. S. Cui, J. S. Liu, and X. M. Ma, "A novel efficient optimal design method for gain-flattened multiwavelength pumped fiber Raman amplifier," IEEE Photon. Technol. Lett. 16(11), 2451-2453 (2004). [CrossRef]
  43. C. Kakkar and K. Thyagarajan, "High gain Raman amplifier with inherent gain flattening and dispersion compensation," Opt. Commun. 250(1-3), 77-83 (2005). [CrossRef]
  44. R. Jose and Y. Ohishi, "Higher nonlinear indices, Raman gain coefficients, and bandwidths in the TeO/sub 2/-ZnO-Nb/sub 2/O/sub 5/-MoO/sub 3/ quaternary glass system," Appl. Phys. Lett . 90(21), 211,104-1-211,104-3 (2007). USA.
  45. R. Stegeman, L. Jankovic, K. Hongki, C. Rivero, G. Stegeman, K. Richardson, P. Delfyett, G. Yu, A. Schulte, and T. Cardinal, "Tellurite glasses with peak absolute Raman gain coefficients up to 30 times that of fused silica," Opt. Lett. 28(13), 1126-1128 (2003). USA. [CrossRef]
  46. Q. Guanshi, R. Jose, and Y. Ohishi, "Design of ultimate gain-flattened O+ E and S+ C+ L ultrabroadband fiber amplifiers using a new fiber Raman gain medium," J. Lightwave Technol. 25(9), 2727-2738 (2007). USA.
  47. A. Mori, H. Masuda, K. Shikano, and M. Shimizu, "Ultra-wide-band tellurite-based fiber Raman amplifier," J. Lightwave Technol. 21(5), 1300-1306 (2003). USA. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited