OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 14 — Jul. 6, 2009
  • pp: 11607–11617

Simplified model for periodic nanoantennae: linear model and inverse design

Joshua Borneman, Kuo-Ping Chen, Alex Kildishev, and Vladimir Shalaev  »View Author Affiliations

Optics Express, Vol. 17, Issue 14, pp. 11607-11617 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (2676 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We determine and use a minimal set of numerical simulations to create a simplified model for the spectral response of nanoantennae with respect to their geometric and modeling parameters. The simplified model is then used to rapidly obtain best-fit modeling parameters to match experimental results, accurately predict the spectral response for various geometries, and inversely design antennae to have a desired performance. This method is structure and model independent, and is applied here to both nanoantenna pair arrays and strips modeled using a 3D finite-element method and 2D spatial harmonic analysis, respectively. Typical numerical simulations may need hours per model, whereas this method, after the initial time to obtain a baseline set of simulations, requires only seconds to analyze and generate spectra for new geometries.

© 2009 OSA

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(220.4830) Optical design and fabrication : Systems design
(240.6680) Optics at surfaces : Surface plasmons
(260.5740) Physical optics : Resonance

ToC Category:
Optics at Surfaces

Original Manuscript: May 13, 2009
Revised Manuscript: June 8, 2009
Manuscript Accepted: June 9, 2009
Published: June 25, 2009

Joshua Borneman, Kuo-Ping Chen, Alex Kildishev, and Vladimir Shalaev, "Simplified model for periodic nanoantennae: linear model and inverse design," Opt. Express 17, 11607-11617 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Mühlschlegel, H. J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005). [CrossRef]
  2. W. Rechberger, A. Hohenau, A. Leitner, J. R. Krenn, B. Lamprecht, and F. R. Aussenegg, “Optical properties of two interacting gold nanoparticles,” Opt. Commun. 220(1-3), 137–141 (2003). [CrossRef]
  3. J. N. Farahani, H.-J. Eisler, D. W. Pohl, M. Pavius, P. Fluckiger, P. Gasser, and B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnology 18(12), 125506 (2007). [CrossRef]
  4. J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett. 95(1), 017402 (2005). [CrossRef]
  5. B. Hecht, P. Muhlschlegel, J. N. Farahani, H.-J. Eisler, D. W. Pohl, O. J. F. Martin, and P. Biagioni, ““Prospects of Resonant Optical Antennas for Nano-Analysis,” Chimia (Aarau) 60(11), 765–769 (2006). [CrossRef]
  6. A. Sundaramurthy, P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6(3), 355–360 (2006). [CrossRef]
  7. M. Moskovits, “Surface-enhanced Raman spectroscopy: a brief retrospective,” 36, 485–496 (2005).
  8. J. Kottmann and O. Martin, “Plasmon resonant coupling in metallic nanowires,” Opt. Express 8(12), 655–663 (2001). [CrossRef]
  9. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys. 94(7), 4632–4642 (2003). [CrossRef]
  10. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single Bowtie Nanoantennas Resonant in the Visible,” Nano Lett. 4(5), 957–961 (2004). [CrossRef]
  11. R. M. Bakker, V. P. Drachev, Z. Liu, H.-K. Yuan, R. H. Pedersen, A. Boltasseva, J. Chen, J. Irudayaraj, A. V. Kildishev, and V. M. Shalaev, “Nanoantenna array-induced fluorescence enhancement and reduced lifetimes,” N. J. Phys. 10(12), 125022 (2008). [CrossRef]
  12. R. M. Bakker, A. Boltasseva, Z. Liu, R. H. Pedersen, S. Gresillon, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Near-field excitation of nanoantenna resonance,” Opt. Express 15(21), 13682–13688 (2007). [CrossRef]
  13. R. M. Bakker, H.-K. Yuan, Z. Liu, V. P. Drachev, A. V. Kildishev, V. M. Shalaev, R. H. Pedersen, S. Gresillon, and A. Boltasseva, “Enhanced localized fluorescence in plasmonic nanoantennae,” Appl. Phys. Lett. 92(4), 043101–043103 (2008). [CrossRef]
  14. S. I. Bozhevolnyi and T. Søndergaard, “General properties of slow-plasmon resonant nanostructures: nano-antennas and resonators,” Opt. Express 15(17), 10869–10877 (2007). [CrossRef]
  15. T. Søndergaard and S. I. Bozhevolnyi, “Metal nano-strip optical resonators,” Opt. Express 15(7), 4198–4204 (2007). [CrossRef]
  16. J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. García de Abajo, B. K. Kelley, and T. Mallouk, “Optical properties of coupled metallic nanorods for field-enhanced spectroscopy,” Phys. Rev. B 71(23), 235420 (2005). [CrossRef]
  17. S. Link and M. A. El-Sayed, “Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods,” J. Phys. Chem. B 103(40), 8410–8426 (1999). [CrossRef]
  18. J.-Y. Kim, V. Drachev, H.-K. Yuan, R. Bakker, and V. Shalaev, “Imaging contrast under aperture tip–nanoantenna array interaction,” Appl. Phys. B 93(1), 189–198 (2008). [CrossRef]
  19. S. Enoch, R. Quidant, and G. Badenes, “Optical sensing based on plasmon coupling in nanoparticle arrays,” Opt. Express 12(15), 3422–3427 (2004). [CrossRef]
  20. P. K. Jain, W. Huang, and M. A. El-Sayed, “On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation,” Nano Lett. 7(7), 2080–2088 (2007). [CrossRef]
  21. J. Li, A. Salandrino, and N. Engheta, “Shaping light beams in the nanometer scale: A Yagi-Uda nanoantenna in the optical domain,” Phys. Rev. B 76(24), 245403–245407 (2007).
  22. K. H. Su, Q. H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle Coupling Effects on Plasmon Resonances of Nanogold Particles,” Nano Lett. 3(8), 1087–1090 (2003). [CrossRef]
  23. H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res. 40(1), 53–62 (2007). [CrossRef]
  24. Z. Liu, A. Boltasseva, R. H. Pedersen, R. Bakker, A. V. Kildishev, V. P. Drachev, and V. M. Shalaev, “Plasmonic nanoantenna arrays for the visible,” Metamaterials (Amst.) 2(1), 45–51 (2008). [CrossRef]
  25. A. Sundaramurthy, K. B. Crozier, G. S. Kino, D. P. Fromm, P. J. Schuck, and W. E. Moerner, “Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles,” Phys. Rev. B 72(16), 165409 (2005). [CrossRef]
  26. E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004). [CrossRef]
  27. A. V. Kildishev and U. K. Chettiar, “Cascading Optical Negative Index Metamaterials,” Appl. Comput. Electromagn. Soc. Jrn. 22, 172–183 (2007).
  28. V. P. Drachev, U. K. Chettiar, A. V. Kildishev, H.-K. Yuan, W. Cai, and V. M. Shalaev, “The Ag dielectric function in plasmonic metamaterials,” Opt. Express 16(2), 1186–1195 (2008). [CrossRef]
  29. A. V. Kildishev, U. K. Chettiar, Z. Liu, V. M. Shalaev, D.-H. Kwon, Z. Bayraktar, and D. H. Werner, “Stochastic optimization of low-loss optical negative-index metamaterial,” J. Opt. Soc. Am. B 24(10), A34–A39 (2007). [CrossRef]
  30. NIST/SEMATECH, e-Handbook of Statistical Methods,” (2009), http://www.itl.nist.gov/div898/handbook/ .
  31. R. L. Plackett and J. P. Burman, “The Design Of Optimum Multifactorial Experiments,” Biometrika 33(4), 305–325 (1946). [CrossRef]
  32. StatSoft, “Electronic Statistics Textbook,” (StatSoft Inc., 2009), http://www.statsoft.com/textbook/stathome.html .
  33. G. E. P. Box, W. G. Hunter, and J. S. Hunter, Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building (John Wiley & Sons, 1978).
  34. R. A. Fisher, “The arrangement of field experiments,” Journal of the Ministry of Agriculture of Great Britain 33, 503–513 (1926).
  35. “Statistics Toolbox: fracfact,” (The MathWorks, Inc.), http://www.mathworks.com/access/helpdesk/help/toolbox/stats/fracfact.html2009 .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited