OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 14 — Jul. 6, 2009
  • pp: 11690–11697

Origin of the anomalous temperature evolution of photoluminescence peak energy in degenerate InN nanocolumns

Pai-Chun Wei, Surojit Chattopadhyay, Fang-Sheng Lin, Chih-Ming Hsu, Shyankay Jou, Jr-Tai Chen, Ping-Jung Huang, Hsu-Cheng Hsu, Han-Chang Shih, Kuei-Hsien Chen, and Li-Chyong Chen  »View Author Affiliations


Optics Express, Vol. 17, Issue 14, pp. 11690-11697 (2009)
http://dx.doi.org/10.1364/OE.17.011690


View Full Text Article

Enhanced HTML    Acrobat PDF (380 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Photoluminescence (PL) behaviour in InN nanocolumns reveal decreasing, increasing and near invariant peak energies (EPL ) as a function of temperature. Samples, having EPL ~0.730 eV at 20 K, showed temperature invariance of EPL . Samples possessing EPL on the lower and higher energy side of 0.730 eV demonstrate a normal redshift and anomalous blueshift, respectively, with increasing temperature. This temperature evolution can be effectively explained on the basis of a competition between a conventional red shift from lattice dilation, dominant for low carrier density sample, on one hand, and a blue shift of the electron and hole quasi Fermi-level separation, dominant for high carrier density samples, on the other.

© OSA

OCIS Codes
(250.5230) Optoelectronics : Photoluminescence
(300.6470) Spectroscopy : Spectroscopy, semiconductors
(160.4236) Materials : Nanomaterials

ToC Category:
Materials

History
Original Manuscript: April 13, 2009
Revised Manuscript: May 14, 2009
Manuscript Accepted: June 2, 2009
Published: June 26, 2009

Citation
Pai-Chun Wei, Surojit Chattopadhyay, Fang-Sheng Lin, Chih-Ming Hsu, Shyankay Jou, Jr-Tai Chen, Ping-Jung Huang, Hsu-Cheng Hsu, Han-Chang Shih, Kuei-Hsien Chen, and Li-Chyong Chen, "Origin of the anomalous temperature evolution of photoluminescence peak energy in degenerate InN nanocolumns," Opt. Express 17, 11690-11697 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-14-11690


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. L. Tansley and C. P. Foley, “Optical band-gap of indium nitride,” J. Appl. Phys. 59(9), 3241–3244 (1986). [CrossRef]
  2. V. Y. Davydov, A. A. Klochikhin, R. P. Seisiyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmuller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Grual, “Absorption and emission of hexagonal InN. Evidence of narrow fundamental band gap,” Phys. Status Solidi B 229, R1–R3 (2002). [CrossRef]
  3. J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Y. Saito, and Y. Nanishi, “Unusual properties of the fundamental band gap of InN,” Appl. Phys. Lett. 80(21), 3967–3969 (2002). [CrossRef]
  4. J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Temperature dependence of the fundamental band gap of InN,” J. Appl. Phys. 94(7), 4457–4460 (2003). [CrossRef]
  5. D. C. Look, H. Lu, W. J. Schaff, J. Jasinski, and Z. Liliental-Weber, “Donor and acceptor concentrations in degenerate InN,” Appl. Phys. Lett. 80(2), 258–260 (2002). [CrossRef]
  6. C. Stampfl, C. G. Van de Walle, D. Vogel, P. Krüger, and J. Pollmann, “Native defects and impurities in InN: First-principles studies using the local-density approximation and self-interaction and relaxation-corrected pseudopotentials,” Phys. Rev. B 61(12), R7846–R7849 (2000). [CrossRef]
  7. S. Z. Wang, S. F. Yoon, Y. X. Xia, and S. W. Xie, “20 meV-deep donor level in InN film of 0.76 eV band gap grown by plasma-assisted nitrogen source,” J. Appl. Phys. 95(12), 7998–8001 (2004). [CrossRef]
  8. T. Stoica, R. J. Meijers, R. Calarco, T. Richter, E. Sutter, and H. Lüth, “Photoluminescence and intrinsic properties of MBE-grown InN nanowires,” Nano Lett. 6(7), 1541–1547 (2006). [CrossRef] [PubMed]
  9. C. H. Shen, H. Y. Chen, H.-W. Lin, S. Gwo, A. A. Klochikhin, and V. Y. Davydov, “Near-infrared photoluminescence from vertical InN nanorod arrays grown on silicon: Effects of surface electron accumulation layer,” Appl. Phys. Lett. 88(25), 253104 (2006). [CrossRef]
  10. C. L. Hsiao, H. C. Hsu, L. C. Chen, C. T. Wu, C. W. Chen, M. Chen, L. W. Tu, and K. H. Chen, “Photoluminescence spectroscopy of nearly defect-free InN microcrystals exhibiting nondegenerate semiconductor behaviors,” Appl. Phys. Lett. 91(18), 181912 (2007). [CrossRef]
  11. I. Mora-Seró, F. Fabregat-Santiago, B. Denier, J. Bisquert, R. Tena-Zaera, J. Elias, and C. Lévy-Clément, “Determination of carrier density of ZnO nanowires by electrochemical techniques,” Appl. Phys. Lett. 89(20), 203117 (2006). [CrossRef]
  12. J. T. Chen, C. L. Hsiao, H. C. Hsu, C. T. Wu, C. L. Yeh, P. C. Wei, L. C. Chen, and K. H. Chen, “Epitaxial growth of InN films by molecular-beam epitaxy using hydrazoic acid (HN3) as an efficient nitrogen source,” J. Phys. Chem. A 111(29), 6755–6759 (2007). [CrossRef] [PubMed]
  13. B. Arnaudov, T. Paskova, P. P. Paskov, B. Magnusson, E. Valcheva, B. Monemar, H. Lu, W. J. Schaff, H. Amano, and I. Akasaki, “Energy position of near-band-edge emission spectra of InN epitaxial layers with different doping levels,” Phys. Rev. B 69(11), 115216 (2004). [CrossRef]
  14. S. P. Fu, T. T. Chen, and Y. F. Chen, “Photoluminescent properties of InN epifilms,” Semicond. Sci. Technol. 21(3), 244–249 (2006). [CrossRef]
  15. J. Wu, W. Walukiewicz, S. X. Li, R. Armitage, J. C. Ho, E. R. Weber, E. E. Haller, H. Lu, W. J. Schaff, A. Barcz, and R. Jakiela, “Effects of electron concentration on the optical absorption edge of InN,” Appl. Phys. Lett. 84(15), 2805–2807 (2004). [CrossRef]
  16. J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Effects of the narrow band gap on the properties of InN,” Phys. Rev. B 66(20), R201403 (2002). [CrossRef]
  17. Y. P. Varshni, “Temperature dependence of energy gap in semiconductors,” Physica 34(1), 149–154 (1967). [CrossRef]
  18. D. S. Jiang, Y. Makita, K. Ploog, and H. J. Queisser, “Electrical-properties and photo-luminescence of Te- doped GaAs grown by molecular-beam-epitaxy,” J. Appl. Phys. 53(2), 999–1006 (1982). [CrossRef]
  19. A. Raymond, J. L. Robert, and C. Bernard, “Electron effective mass in heavily doped GaAs,” J. Phys. 12, 2289–2293 (1979).
  20. V. Lebedev, V. Climalla, T. Baumann, and O. Ambacher, “Effect of dislocations on electrical and electron transport properties of InN thin films. I. Strain relief and formation of a dislocation network,” J. Appl. Phys. 100(9), 094903 (2006). [CrossRef]
  21. E. S. Koteles and W. R. Datars, “Temperature-dependence of electron on effective mass in InSb,” Phys. Rev. B 9(2), 568–571 (1974). [CrossRef]
  22. H. Yokoi, S. Takeyama, and N. Miura, “Anomalous temperature-dependence of the effective mass in n-type PbTe,” Phys. Rev. B 44(12), 6519–6522 (1991). [CrossRef]
  23. L. F. J. Piper, T. D. Veal, I. Mahboob, and C. F. McConville, “Temperature invariance of InN electron accumulation,” Phys. Rev. B 70(11), 115333 (2004). [CrossRef]
  24. V. Yu. Davydov, A. A. Klochikhin, V. V. Emtsev, D. A. Kurdyukov, S. V. Ivanov, V. A. Vekshin, F. Bechstedt, J. Furthmüller, J. Aderhold, J. Graul, A. V. Mudryi, H. Harima, A. Hashimoto, A. Yamamoto, and E. E. Haller, “Band Gap of Hexagonal InN and InGaN Alloys,” Phys. Status Solidi B 234, 787–795 (2002). [CrossRef]
  25. B. Bansal, A. Kadir, A. Bhattacharya, and V. V. Moshchalkov, “Photoluminescence from localized states in disordered indium nitride,” Appl. Phys. Lett. 93(2), 021113 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited