OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 14 — Jul. 6, 2009
  • pp: 11719–11729

Femtosecond laser written optofluidic sensor: Bragg grating waveguide evanescent probing of microfluidic channel

Valeria Maselli, Jason R. Grenier, Stephen Ho, and Peter R. Herman  »View Author Affiliations

Optics Express, Vol. 17, Issue 14, pp. 11719-11729 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (763 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Microfluidic channels and Bragg Grating Waveguides (BGWs) were simultaneously fabricated inside fused silica glass by means of femtosecond laser exposure followed by chemical etching. Evanescent field penetration of the waveguide mode into the parallel microfluidic channel induced Bragg resonant wavelength shifts to enable refractive index characterization of the fluidic medium in the 1 to 1.452 range. Laser exposure was optimized to fabricate devices with optically smooth channel walls and narrow Bragg resonances for high sensing response at 1560 nm wavelength. Reference gratings were also employed in the optical circuit for temperature and strain compensation. These devices open new directions for optical sensing in three-dimensional optofluidic and reactor microsystems.

© 2009 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(140.3390) Lasers and laser optics : Laser materials processing
(140.7090) Lasers and laser optics : Ultrafast lasers
(230.1480) Optical devices : Bragg reflectors
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Integrated Optics

Original Manuscript: May 27, 2009
Revised Manuscript: June 11, 2009
Manuscript Accepted: June 23, 2009
Published: June 26, 2009

Virtual Issues
Vol. 4, Iss. 9 Virtual Journal for Biomedical Optics

Valeria Maselli, Jason R. Grenier, Stephen Ho, and Peter R. Herman, "Femtosecond laser written optofluidic sensor: Bragg grating waveguide evanescent probing of microfluidic channel," Opt. Express 17, 11719-11729 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. B. Mogensen, N. J. Petersen, J. Hübner, and J. P. Kutter, "Monolithic integration of optical waveguides for absorbance detection in microfabricated electrophoresis devices," Electrophoresis 22, 3930-3938 (2001). [CrossRef] [PubMed]
  2. K. B. Mogensen, Y. C. Kwok, J. C. T. Eijkel, N. J. Petersen, A. Manz, and J. P. Kutter, "A Microfluidic Device with an Integrated Waveguide Beam Splitter for Velocity Measurements of Flowing Particles by Fourier Transformation," Anal. Chem. 75, 4931-4936 (2003). [CrossRef] [PubMed]
  3. K. B. Mogensen, J. El-Ali, A. Wolff, and J. P. Kutter, "Integration of polymer waveguides for optical detection in microfabricated chemical analysis systems," Appl. Opt. 42, 4072-4079 (2003). [CrossRef] [PubMed]
  4. S. Mandal and D. Erickson, "Nanoscale optofluidic sensor arrays," Opt. Express 16, 1623-1631 (2008). [CrossRef] [PubMed]
  5. Y. Bellouard, A. Said, M. Dugan, and P. Bado, "Fabrication of high-aspect ratio micro-fluidic channels and tunnels using femtosecond laser pulses and chemical etching," Opt. Express 12, 2120-2129 (2004). [CrossRef] [PubMed]
  6. G. T. A. Kovac, Micromachined Transducers Sourcebook (McGraw Hill, New York, 1998).
  7. K. B. Mogensen, H. Klank, and J. P. Kutter, "Recent developments in detection for microfluidic systems," Electrophoresis 25, 3498-3512 (2004). [CrossRef] [PubMed]
  8. D. Erickson, S. Mandal, A. H. J. Yang, and B. Cordovez, "Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale," Microfluidics and Nanofluidics 4, 33-52 (2008). [CrossRef] [PubMed]
  9. A. Y. Fu, C. Spence, A. Scherer, F. H. Arnold, and S. R. Quake, "A microfabricated fluorescence-activated cell sorter," Nat. Biotechnol. 17, 1109-1111 (1999). [CrossRef] [PubMed]
  10. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, "Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity," Opt. Lett. 29, 1093-1095 (2004). [CrossRef] [PubMed]
  11. A. B. Matsko and V. S. Ilchenko, "Optical resonators with whispering-gallery modes - Part I: Basics," IEEE J. Sel. Top. Quantum Electron. 12, 3-14 (2006). [CrossRef]
  12. B. J. Luff, J. S. Wilkinson, J. Piehler, U. Hollenbach, J. Ingenhoff, and N. Fabricius, "Integrated optical Mach-Zehnder biosensor," J. Lightwave Technol. 16, 583-592 (1998). [CrossRef]
  13. R. Karlsson, "SPR for molecular interaction analysis: a review of emerging application areas," Journal of Molecular Recognition 17, 151-161 (2004). [CrossRef] [PubMed]
  14. D. A. Pereira, O. Frazão, and J. L. Santos, "Fiber Bragg grating sensing system for simultaneous measurement of salinity and temperature," Opt. Eng. 43, 299-304 (2004). [CrossRef]
  15. A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, "High Sensitivity Evanescent Field Fiber Bragg Grating Sensor," IEEE Photon. Technol. Lett. 17, 1253-1255 (2005). [CrossRef]
  16. J. C. Gates, C. H. Holmes, F. R. M. Adikan, C. B. E. Gawith, and P. G. R. Smith, "New geometry for planar UV written refractive index sensors," Proc. SPIE 6585, 65850O (2007). [CrossRef]
  17. C. Schaffer, A. Brodeur, J. García, and E. Mazur, "Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy," Opt. Lett. 26, 93-95 (2001). [CrossRef]
  18. A. Marcinkevičius, S. Juodkazis, M. Watanabe, M. Miwa, S. Matsuo, H. Misawa, and J. Nishii, "Femtosecond laser-assisted three-dimensional microfabrication in silica," Opt. Lett. 26, 277-279 (2001). [CrossRef]
  19. Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, "Three-dimensional micro-optical components embedded in photosensitive glass by a femtosecond laser," Opt. Lett. 28, 1144-1146 (2003). [CrossRef] [PubMed]
  20. C. Hnatovsky, R. S. Taylor, E. Simova, V. R. Bhardwaj, D. M. Rayner, and P. B. Corkum, "Polarization-selective etching in femtosecond laser-assisted microfluidic channel fabrication in fused silica," Opt. Lett. 30, 1867-1869 (2005). [CrossRef] [PubMed]
  21. Y. Shimotsuma, P. Kazansky, J. Qiu, and K. Hirao, "Self-Organized Nanogratings in Glass Irradiated by Ultrashort Light Pulses," Phys. Rev. Lett. 91, 247405 (2003). [CrossRef] [PubMed]
  22. K. Sugioka, Y. Cheng, and K. Midorikawa, "Three-dimensional micromachining of glass using femtosecond laser for lab-on-chip device manufacture," Appl. Phys. A 81, 1-10 (2005). [CrossRef]
  23. R. W. ApplegateJr., J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, "Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping," Lab Chip 6, 422-426 (2006). [CrossRef] [PubMed]
  24. R. Osellame, V. Maselli, R. Martinez Vazquez, R. Ramponi, and G. Cerullo, "Integration of optical waveguides and microfluidic channels both fabricated by femtosecond laser irradiation," Appl. Phys. Lett. 90, 231118 (2007). [CrossRef]
  25. M. Kim, D. J. Hwang, H. Jeon, K. Hiromatsu, and C. P. Grigoropoulos, "Single cell detection using a glass-based optofluidic device fabricated by femtosecond laser pulses," Lab Chip 9, 311-318 (2009). [CrossRef]
  26. L. Shah, A. Y. Arai, S. Eaton, and P. Herman, "Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate," Opt. Express 13, 1999-2006 (2005). [CrossRef] [PubMed]
  27. H. Zhang, S. M. Eaton, and P. R. Herman, "Single-step writing of Bragg grating waveguides in fused silica with an externally modulated femtosecond fiber laser," Opt. Lett. 32, 2559-2561 (2007). [CrossRef] [PubMed]
  28. R. Kashyap, Fiber Bragg gratings (Academic Press, San Diego, CA, 1999).
  29. C. Hnatovsky, R. S. Taylor, E. Simova, P. P. Rajeev, D. M. Rayner, V. R. Bhardwaj, and P. B. Corkum, "Fabrication of microchannels in glass using focused femtosecond laser radiation and selective chemical etching," Appl. Phys. A 84, 47-61 (2006). [CrossRef]
  30. V. Maselli, R. Osellame, G. Cerullo, R. Ramponi, P. Laporta, L. Magagnin, and P. L. Cavallotti, "Fabrication of long microchannels with circular cross section using astigmatically shaped femtosecond laser pulses and chemical etching," Appl. Phys. Lett. 88, 191107 (2006). [CrossRef]
  31. S. Ho, M. L. Ng, S. M. Eaton, P. R. Herman, and J. S. Aitchison, "Single and Multi-Scan Femtosecond Laser Writing for Selective Chemical Etching of Glass Micro-Channels," in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science and Photonic Applications Systems Technologies, (Optical Society of America, 2007), paper CThJ4, http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2007-CThJ4. [PubMed]
  32. S. Ho, S. Eaton, M. L. Ng, J. S. Aitchison, and P. R. Herman, University of Toronto, 10 King’s College Road, M5S 3G4 Toronto, Ontario, Canada, are preparing a manuscript to be called "Single- and multi-scan femtosecond laser writing for selective chemical etching of cross-section patternable glass micro-channels."
  33. V. Maselli, "Femtosecond laser fabrication of optical waveguides and microfluidic channels," Ph.D. Thesis, Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy (2007).
  34. K. C. Vishnubhatla, N. Bellini, R. Ramponi, G. Cerullo, and R. Osellame, "Shape control of microchannels fabricated in fused silica by femtosecond laser irradiation and chemical etching," Opt. Express 17, 8685-8695 (2009). [CrossRef] [PubMed]
  35. H. Zhang, S. Ho, S. M. Eaton, J. Li, and P. R. Herman, "Three-dimensional optical sensing network written in fused silica glass with femtosecond laser," Opt. Express 16, 14015-14023 (2008). [CrossRef] [PubMed]
  36. W. W. Morey, G. Meltz, and W. H. Glenn, "Bragg-grating temperature and strain sensors," in Proceedings of the 6th International Conference on Optical Fiber Sensors (Springer-Verlag, Paris, France, 1989), pp. 526-531.
  37. A. Othonos, "Fiber Bragg gratings," Rev. Sci. Instrum. 68, 4309-4341 (1997). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited