OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 14 — Jul. 6, 2009
  • pp: 11782–11793

Extremely large mode area optical fibers formed by thermal stress

Libin Fu, Hugh A. McKay, and Liang Dong  »View Author Affiliations

Optics Express, Vol. 17, Issue 14, pp. 11782-11793 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (699 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a strictly single-mode optical fiber with a record core diameter of 84µm and an effective mode area of ~3600µm2 at 1µm. We also demonstrate fundamental mode operation in an optical fiber with a record core diameter of 252µm and a measured mode field diameter (MFD) of 149µm at 1.03µm, i.e. an effective mode area (Aeff ) of ~17,400µm2 at 1.03µm, an Aeff of 31,600µm2 at 1.5µm. All these fibers have near parabolic index profiles with a peak refractive index difference ΔN≈~6×10-5, i.e. a record low numerical aperture (NA) of ~0.013 in an optical fiber. This low refractive index difference was achieved by frozen-in thermal stress as a result of two different types of glass in the fibers. When the fundamental mode was excited in the 252µm core fiber using a 1.03µm ASE source, the output beam was measured to have M2 x =1.04 and M2 y =1.18.

© 2009 OSA

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2430) Fiber optics and optical communications : Fibers, single-mode
(190.4370) Nonlinear optics : Nonlinear optics, fibers

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: April 24, 2009
Revised Manuscript: June 22, 2009
Manuscript Accepted: June 24, 2009
Published: June 29, 2009

Libin Fu, Hugh A. McKay, and Liang Dong, "Extremely large mode area optical fibers formed by thermal stress," Opt. Express 17, 11782-11793 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, “Extended single-mode photonic crystal fiber lasers,” Opt. Express 14(7), 2715–2720 (2006). [CrossRef]
  2. J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, F. Röser, A. Liem, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, “High-power rod-type photonic crystal fiber laser,” Opt. Express 13(4), 1055–1058 (2005). [CrossRef]
  3. C. D. Brooks and F. Di Teodoro, “Multi-megawatt peak-power, single-transverse-mode operation of a 100 µm core diameter, Yb-doped rod-like photonic crystal fiber amplifier,” Appl. Phys. Lett. 89(11), 111119–111121 (2006). [CrossRef]
  4. L. Dong, X. Peng, and J. Li, “Leakage channel optical fibers with large effective area,” J. Opt. Soc. Am. B 24(8), 1689–1697 (2007). [CrossRef]
  5. L. Dong, J. Li, H. A. McKay, A. Marcinkevicius, B. T. Thomas, M. Moore, L. B. Fu, and M. E. Fermann, “Robust and practical optical fibers for single mode operation with core diameters up to 170μm,” Conference on Lasers and Electro-optics, post-deadline paper CPDB6, San Jose, CA, May 2008.
  6. S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, “Light propagation with ultralarge modal areas in optical fibers,” Opt. Lett. 31(12), 1797–1799 (2006). [CrossRef]
  7. M. E. Fermann, “Single-mode excitation of multimode fibers with ultrashort pulses,” Opt. Lett. 23(1), 52–54 (1998). [CrossRef]
  8. J. P. Koplow, D. A. V. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett. 25(7), 442–444 (2000). [CrossRef]
  9. A. Galvanauskas, M. Y. Cheng, K. C. Hou, and K. H. Liao, “High peak power pulse amplification in large core Yb-doped fiber amplifiers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 559–566 (2007).
  10. J. M. Fini, “Bend-resistant design of conventional and microstructure fibers with very large mode area,” Opt. Express 14(1), 69–81 (2006). [CrossRef]
  11. K. Brugger, “Effects of thermal stress on refractive index in clad fibers,” Appl. Opt. 10(2), 437–438 (1971). [CrossRef]
  12. U. C. Paek and C. R. Kurkjian, “Calculation of cooling rate and induced stress in drawing of optical fibers,” J. Am. Ceram. Soc. 58(7-8), 330–335 (1975). [CrossRef]
  13. R. A. Sammut and P. L. Chu, “Axial stress and its effect on relative strength of polarization-maintaining fibers and preforms,” J. Lightwave Technol. LT-3(2), 283–287 (1985). [CrossRef]
  14. Y. Hibino, F. Hanawa, T. Abe, and S. Shibata, “Residual stress effects on refractive indices in undoped silica-core single-mode fibers,” Appl. Phys. Lett. 50(22), 1565–1566 (1987). [CrossRef]
  15. B. Ortaç, M. Baumgartl, O. Schmidt, and J. Limpert, “μJ-level femtosecond and picosecond fiber oscillators,” MB15,OSA, Advanced Solid-State Photonics 2009.
  16. P. St. J. Russell, “Photonic-Crystal Fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006). [CrossRef]
  17. L. Dong, H. A. Mckay, and L.B. Fu, “All-glass endless single mode photonic crystal fibers,” Opt.Lett . 33(21), 2440 (2008). [CrossRef]
  18. M. Born, and E. Wolf, “Principle of Optics,” Pergamon Press, 1991.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited