OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 14 — Jul. 6, 2009
  • pp: 11794–11798

Optical nanoheater based on the Yb3+-Er3+ co-doped nanoparticles

V.K. Tikhomirov, K. Driesen, V.D. Rodriguez, P. Gredin, M. Mortier, and V.V. Moshchalkov  »View Author Affiliations

Optics Express, Vol. 17, Issue 14, pp. 11794-11798 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (106 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Yb3+-Er3+ co-doped fluoride nanoparticles have been prepared. When pumped by 975 nm laser diode into absorption band of Yb3+, the laser-induced temperature rise up to 800°C has been detected in the nanoparticles by measuring the ratio of the intensities of the thermalised up-conversion luminescence bands 2H11/24I15/2 and 4S3/24I15/2 of Er3+. These results show that a controlled optical heating of the nanoparticles and their surrounding nano-volumes can be realised, while the location and temperature rise of the nanoparticles and heated nano-volumes can be detected distantly by means of luminescence.

© 2009 OSA

OCIS Codes
(160.5690) Materials : Rare-earth-doped materials
(250.5230) Optoelectronics : Photoluminescence
(160.4236) Materials : Nanomaterials

ToC Category:

Original Manuscript: April 27, 2009
Revised Manuscript: June 1, 2009
Manuscript Accepted: June 2, 2009
Published: June 29, 2009

V.K. Tikhomirov, K. Driesen, V.D. Rodriguez, P. Gredin, M. Mortier, and V.V. Moshchalkov, "Optical nanoheater based on the Yb3+-Er3+ co-doped nanoparticles," Opt. Express 17, 11794-11798 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. Aigouy, P. Lalanne, J. P. Hugonin, G. Julié, V. Mathet, and M. Mortier, “Near-field analysis of surface waves launched at nanoslit apertures,” Phys. Rev. Lett. 98(15), 153902 (2007). [CrossRef]
  2. H. Zhou, M. Wissinger, J. Fallert, R. Hauschild, F. Stelzl, C. Klingshirn, and H. Kalt, “Ordered, uniform-sized ZnO nanolaser arrays,” Appl. Phys. Lett. 91(18), 181112 (2007). [CrossRef]
  3. J. Zhang, Y. Fu, and J. R. Lakowicz, “Luminescent images of single gold nanoparticles and their labeling on silica beads,” Opt. Express 15(20), 13415–13420 (2007). [CrossRef]
  4. D. Matsuura, “Red, green and blue up-conversion luminescence of trivalent rare earth ion-doped Y2O3 nanocrystals,” Appl. Phys. Lett. 81(24), 4526–4528 (2002). [CrossRef]
  5. M. Mortier and G. Patriarche, “Oxide glass used as inorganic template for fluorescent fluoride nano-particle synthesis,” Opt. Mater. 28(12), 1401–1404 (2006). [CrossRef]
  6. V. K. Tikhomirov, M. Mortier, P. Gredin, G. Patriarche, C. Görller-Walrand, and V. V. Moshchalkov, “Preparation and up-conversion luminescence of 8 nm rare-earth doped fluoride nanoparticles,” Opt. Express 16(19), 14544–14549 (2008). [CrossRef]
  7. L. Aigouy, G. Tessier, M. Mortier, and B. Charlot, “Scanning thermal imaging of microelectronic circuits with a fluorescent nanoprobe,” Appl. Phys. Lett. 87(18), 184105 (2005). [CrossRef]
  8. V. K. Tikhomirov, D. Furniss, A. B. Seddon, I. M. Reaney, M. Beggiora, M. Ferrari, M. Montagna, and R. Rolli, “Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxyfluoride glass-ceramics,” Appl. Phys. Lett. 81(11), 1937–1939 (2002). [CrossRef]
  9. V. D. Rodríguez, V. K. Tikhomirov, J. Méndez-Ramos, J. del-Castillo, and C. Görller-Walrand, “Measurement of quantum yield of up-conversion Luminescence in Er(3+)-doped nano-glass-ceramics,” J. Nanosci. Nanotechnol. 9(3), 2072–2075 (2009). [CrossRef]
  10. F. Auzel, “Up-conversion and anti-Stokes processes with d and f ions in solids,” Chem. Rev. 104(1), 139–174 (2004). [CrossRef]
  11. D. J. M. Bevan, J. Strähle, and O. Greis, “The cystal structure of tveitite an ordered yttrofluorite mineral,” J. Solid State Chem. 44(1), 75–81 (1982). [CrossRef]
  12. A. de Camargo, J. Possato, L. Nunes, E. Botero, E. Andreeta, D. Garcia, and J. Eiras, “Infrared to visible frequency up-conversion temperature sensor based on Er3+-doped PLZT transparent ceramics,” Solid State Commun. 137(1-2), 1–5 (2006). [CrossRef]
  13. H. Kusama, O. J. Sovers, and T. Yoshioka, “Line shift method for phosphor temperature measurement,” Jpn. J. Appl. Phys. 15(12), 2349–2358 (1976). [CrossRef]
  14. T. Hayakawa, M. Hayakawa, and M. Nogami, “Estimation of the fs laser spot temperature inside TeO2-ZnO-Nb2O5 glass by using up-conversion green fluorescence of Er3+ ions,” J. Alloy. Comp. 451(1-2), 77–80 (2008). [CrossRef]
  15. H. Desirena, E. De la Rosa, A. Shulzgen, S. Shabet, and N. Peyghambarian, “Er3+ and Yb3+ concentration effect in the spectroscopic properties and energy transfer in Yb3+/Er3+ co-doped tellurite glasses,” J. Phys. D Appl. Phys. 41(9), 095102 (2008). [CrossRef]
  16. D. Saurel, V. K. Tikhomirov, V. V. Moshchalkov, C. Görller-Walrand, and K. Driesen, “Zeeman splitting and confinement effects in Er3+-doped nano-glass-ceramics in magnetic fields up to 50 Tesla,” Appl. Phys. Lett. 92(17), 171101 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited