OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 14 — Jul. 6, 2009
  • pp: 11822–11833

Numerical Simulations of a Surface Plasmonic Waveguide with three circular air cores

Ya-nan Guo, Wenrui Xue, Rongcao Yang, and Wenmei Zhang  »View Author Affiliations

Optics Express, Vol. 17, Issue 14, pp. 11822-11833 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1558 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, a kind of surface plasmonic waveguide (SPW) with three circular air cores is presented. Based on the finite-difference frequency-domain (FDFD) method, dependence of the distribution of energy flux density, effective index, propagation length and mode area of the fundamental mode on the geometrical parameters and the working wavelengths is analyzed firstly. Then, comparison with the SPW which was proposed in our previous work has been carried out. Results show that this kind of three cores structure has better propagation properties than the double cores structure. To investigate the relative advantages of this kind of SPW over other previous reported SPWs, comparison with the SPW with a single wedge has been carried out. Results show that this kind of SPW has shorter propagation length and larger mode area. Finally, the possibility to overcome the large propagation loss by using a gain medium as core material is investigated. Since the propagation properties can be adjusted by the geometrical and electromagnetic parameters, this kind of surface plasmonic waveguide can be applied to the field of photonic components in the integrated optical circuits and sensors.

© 2009 OSA

OCIS Codes
(130.2790) Integrated optics : Guided waves
(240.6680) Optics at surfaces : Surface plasmons
(250.5300) Optoelectronics : Photonic integrated circuits

ToC Category:
Optics at Surfaces

Original Manuscript: April 30, 2009
Revised Manuscript: June 5, 2009
Manuscript Accepted: June 14, 2009
Published: June 29, 2009

Ya-nan Guo, Wenrui Xue, Rongcao Yang, and Wenmei Zhang, "Numerical Simulations of a Surface 
Plasmonic Waveguide with three circular 
air cores," Opt. Express 17, 11822-11833 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. A. Atwater, “The promise of plasmonics,” Science 296, 56–63 (2007).
  2. H. Rather, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Springer-Verlag, Berlin, 1988).
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef]
  4. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006). [CrossRef]
  5. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006). [CrossRef]
  6. S. A. Maier, “Plasmonics: The promise of highly integrated optical devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1671–1677 (2006).
  7. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2(4), 229–232 (2003). [CrossRef]
  8. H. X. Zhang, Y. Gu, and Q. H. Gong, “A visible-near infrared tunable waveguide based on plasmonic gold nanoshell,” Chinese Physics B 17(7), 2567–2573 (2008).
  9. E. N. Economou, “Surface plasmon in thin films,” Phys. Rev. 182(2), 539–554 (1969). [CrossRef]
  10. P. Berini, “Plasmon polariton modes guided by a metal film of finite width,” Opt. Lett. 24(15), 1011–1013 (1999). [CrossRef]
  11. J. Jung, T. Sondergaard, and S. I. Bozhevolnyi, “Theoretical analysis of square surface plasmon-polariton waveguides for long-range polarization-independent waveguiding,” Phys. Rev. B 76(3), 035434 (2007). [CrossRef]
  12. J. Guo and R. Adato, “Control of 2D plasmon-polariton mode with dielectric nanolayers,” Opt. Express 16(2), 1232–1237 (2008), http://www.opticsexpress.org/abstract.cfm?uri=oe-16-2-1232 . [CrossRef]
  13. K. Tanaka and M. Tanaka, “Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide,” Appl. Phys. Lett. 82(8), 1158–1160 (2003). [CrossRef]
  14. F. Kusunoki, T. Yotsuya, J. Takahara, and T. Kobayashi, “Propagation properties of guided waves in index-guided two-dimensional optical waveguides,” Appl. Phys. Lett. 86(21), 211101 (2005). [CrossRef]
  15. R. Gordon and A. G. Brolo, “Increased cut-off wavelength for a subwavelength hole in a real metal,” Opt. Express 13(6), 1933–1938 (2005), http://www.opticsexpress.org/abstract.cfm?uri=oe-13-6-1933 . [CrossRef]
  16. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, Y. Matsuzaki, K. C. Vernon, K. Yamaguchi, T. Okamoto, M. Haraguchi, and M. Fukui, “Two- dimensionally localized modes of a nanoscale gap plasmon waveguide,” Appl. Phys. Lett. 87(26), 261114 (2005). [CrossRef]
  17. L. Liu, Z. Han, and S. He, “Novel surface plasmon waveguide for high integration,” Opt. Express 13(17), 6645–6650 (2005), http://www.opticsexpress.org/abstract.cfm?uri=oe-13-17-6645 . [CrossRef]
  18. D. F. P. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on riangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87(6), 061106 (2005). [CrossRef]
  19. E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100(2), 023901 (2008). [CrossRef]
  20. A. Boltasseva, V. S. Volkov, R. B. Nielsen, E. Moreno, S. G. Rodrigo, and S. I. Bozhevolnyi, “Triangular metal wedges for subwavelength plasmon-polariton guiding at telecom wavelengths,” Opt. Express 16(8), 5252–5260 (2008), http://www.opticsexpress.org/abstract.cfm?uri=oe-16-8-5252 . [CrossRef]
  21. W. R. Xue, Y. N. Guo, P. Li, and W. M. Zhang, “Propagation Properties of a Surface Plasmonic Waveguide with double elliptical air cores,” Opt. Express 16(14), 10710–10720 (2008), http://www.opticsexpress.org/abstract.cfm?uri=oe-16-14-10710 . [CrossRef]
  22. J. Q. Lu and A. A. Maradudin, “Channel plasmons,” Phys. Rev. B 42(17), 11159–11165 (1990). [CrossRef]
  23. L. Chen, J. Shakya, and M. Lipson, “Subwavelength confinement in an integrated metal slot waveguide on silicon,” Opt. Lett. 31(14), 2133–2135 (2006). [CrossRef]
  24. D. F. P. Pile and D. K. Gramotnev, “Channel plasmon-polariton in a triangular groove on a metal surface,” Opt. Lett. 29(10), 1069–1071 (2004). [CrossRef]
  25. I. Lee, J. Jung, J. Park, H. Kim, and B. Lee, “Dispersion characteristics of channel plasmon polariton waveguides with step-trench-type grooves,” Opt. Express 15(25), 16596–16603 (2007), http://www.opticsexpress.org/abstract.cfm?uri=oe-15-25-16596 . [CrossRef]
  26. G. P. Wang and B. Wang, “Metal heterostructure-based nanophotonic devices: finite-difference time-domain numerical simulations,” J. Opt. Soc. Am. B 23(8), 1660–1665 (2006). [CrossRef]
  27. B. Wang and G. P. Wang, “Planar metal heterostructures for nanoplasmonic waveguides,” Appl. Phys. Lett. 90(1), 013114 (2007). [CrossRef]
  28. D. Arbel and M. Orenstein, “Plasmonic modes in W-shaped metal-coated silicon grooves,” Opt. Express 16(5), 3114–3119 (2008), http://www.opticsexpress.org/abstract.cfm?uri=oe-16-5-3114 . [CrossRef]
  29. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21(12), 2442–2446 (2004). [CrossRef]
  30. A. N. Sudarkin and P. A. Demkovich, “Excitation of surface electromagnetic waves on the boundary of a metal with an amplifying medium,” Sov. Phys. Tech. Phys. 34, 764–766 (1989).
  31. M. P. Nezhad, K. Tetz, and Y. Fainman, “Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides,” Opt. Express 12(17), 4072–4079 (2004), http://www.opticsexpress.org/abstract.cfm?uri=oe-12-17-4072 . [CrossRef]
  32. I. Avrutsky, “Surface plasmons at nanoscale relief gratings between a metal and a dielectric medium with optical gain,” Phys. Rev. B 70(15), 155416 (2004). [CrossRef]
  33. N. M. Lawandy, “Localized surface plasmon singularities in amplifying media,” Appl. Phys. Lett. 85(21), 5040–5042 (2004). [CrossRef]
  34. S. A. Maier, “Gain-assisted propagation of electromagnetic energy in subwavelength surface plasmon polariton gap waveguides,” Opt. Commun. 258(2), 295–299 (2006). [CrossRef]
  35. D. S. Citrin, “Plasmon-polariton transport in metal-nanoparticle chains embedded in a gain medium,” Opt. Lett. 31(1), 98–100 (2006). [CrossRef]
  36. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  37. Z. Zhu and T. G. Brown, “Full-vectorial finite-difference analysis of microstructured optical fibers,” Opt. Express 10(17), 853–864 (2002), http://www.opticsexpress.org/abstract.cfm?uri=oe-10-17-853 .
  38. S. Guo, F. Wu, S. Albin, H. Tai, and R. S. Rogowski, “Loss and dispersion analysis of microstructured fibers by finite-difference method,” Opt. Express 12(15), 3341–3352 (2004), http://www.opticsexpress.org/abstract.cfm?uri=oe-12-15-3341 . [CrossRef]
  39. C. P. Yu and H. C. Chang, “Yee-mesh-based finite difference eigenmode solver with PML absorbing boundary conditions for optical waveguides and photonic crystal fibers,” Opt. Express 12(25), 6165–6177 (2004), http://www.opticsexpress.org/abstract.cfm?uri=oe-12-25-6165 . [CrossRef]
  40. W. E. Arnoldi, “The principle of minimized iteration in the solution of matrix eigenvalue problems,” Q. Appl. Math. 9, 17–29 (1951).
  41. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett. 22(7), 475–477 (1997). [CrossRef]
  42. M. Yan and M. Qiu, “Guided plasmon polariton at 2D metal coners,” J. Opt. Soc. Am. B 24(9), 2333–2342 (2007). [CrossRef]
  43. E. D. Palik, Handbook of Optical Constants of Solids(Academic, New York, 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited