OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 14 — Jul. 6, 2009
  • pp: 11869–11883

Photonic bandgap fibers with resonant structures for tailoring the dispersion

Z. Várallyay, K. Saitoh, Á. Szabó, and R. Szipőcs  »View Author Affiliations

Optics Express, Vol. 17, Issue 14, pp. 11869-11883 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (976 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Numerical simulations on different kinds of realistic photonic bandgap fibers exhibiting reversed dispersion slope for the propagating fundamental mode are reported. We show that reversed or flat dispersion functions in a wide wavelength range using hollow-core, air-silica photonic bandgap fibers and solid core Bragg fibers with step-index profile can be obtained by introducing resonant structures in the fiber cladding. We evaluate the dispersion and confinement loss profiles of these fibers from the Helmholtz eigenvalue equation and the calculated fiber properties are used to investigate the propagation of chirped femtosecond pulses through serially connected hollow core fiber compressors.

© 2009 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Photonic Crystal Fibers

Original Manuscript: May 19, 2009
Revised Manuscript: June 20, 2009
Manuscript Accepted: June 22, 2009
Published: June 29, 2009

Z. Várallyay, K. Saitoh, Á. Szabó, and R. Szipocs, "Photonic bandgap fibers with resonant structures for tailoring the dispersion," Opt. Express 17, 11869-11883 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. St. J. Russell, "Photonic-Crystal Fibers," J. Lightwave Technol. 24, 4729-4749 (2006). [CrossRef]
  2. C. K. Nielsen, K. G. Jespersen, and S. R. Keiding, "A 158 fs 5.3 nJ fiber-laser system at 1mm using photonic bandgap fibers for dispersion control and pulse compression," Opt. Express 14, 6063-6068 (2006). [CrossRef] [PubMed]
  3. A. Ruehl, O. Prochnow, M. Engelbrecht, D. Wandt, and D. Kracht, "Similariton fiber laser with a hollow-core photonic bandgap fiber for dispersion control," Opt. Lett. 32, 1084-1086 (2007). [CrossRef] [PubMed]
  4. C. de Matos, J. Taylor, T. Hansen, K. Hansen, and J. Broeng, "All-fiber chirped pulse amplification using highlydispersive air-core photonic bandgap fiber," Opt. Express 11, 2832-2837 (2003). [CrossRef] [PubMed]
  5. H. Lim, F. Ilday, and F. Wise, "Femtosecond ytterbium fiber laser with photonic crystal fiber for dispersion control," Opt. Express 10, 1497-1502 (2002). [PubMed]
  6. J.W. Nicholson, S. Ramachandran, and S. Ghalmi, "A passively-modelocked, Yb-doped, figure-eight, fiber laser utilizing anomalous-dispersion higher-order-mode fiber," Opt. Express 15, 6623-6628 (2007). [CrossRef] [PubMed]
  7. J. Jasapara, Tsing Hua Her, R. Bise, R. Windeler, and D. J. DiGiovanni, "Group-velocity dispersion measurements in a photonic bandgap fiber," J. Opt. Soc. Am. B 20, 1611-1615 (2003). [CrossRef]
  8. J. Lægsgaard, N. A. Mortensen, J. Riishede, and A. Bjarklev, "Material effects in air-guiding photonic bandgap fibers," J. Opt. Soc. Am. B 20, 2046-2051 (2003). [CrossRef]
  9. D. Ouzounov, C. Hensley, A. Gaeta, N. Venkateraman, M. Gallagher, and K. Koch, "Soliton pulse compression in photonic band-gap fibers," Opt. Express 13, 6153-6159 (2005). [CrossRef] [PubMed]
  10. Z. Várallyay, K. Saitoh, J. Fekete, K. Kakihara, M. Koshiba, and R. Szipőcs, "Reversed dispersion slope photonic bandgap fibers for broadband dispersion control in femtosecond fiber lasers," Opt. Express 16, 15603-15616 (2008). [CrossRef] [PubMed]
  11. J. Jasapara, R. Bise, T. Her, and J. W. Nicholson, "Effect of Mode Cut-Off on Dispersion in Photonic Bandgap Fibers," in Optical Fiber Communication Conference, Technical Digest (Optical Society of America, 2003), paper ThI3.
  12. T. Engeness, M. Ibanescu, S. Johnson, O. Weisberg, M. Skorobogatiy, S. Jacobs, and Y. Fink, "Dispersion tailoring and compensation by modal interactions in OmniGuide fibers," Opt. Express 11, 1175-1196 (2003). [CrossRef] [PubMed]
  13. Q. Fang, Z. Wang, L. Jin, J. Liu, Y. Yue, Y. Liu, G. Kai, S. Yuan, and X. Dong, "Dispersion design of all-solid photonic bandgap fiber," J. Opt. Soc. Am. B 24, 2899-2905 (2007). [CrossRef]
  14. P. J. Roberts, "Control of dispersion in hollow core photonic crystal fibers," Conference on Lasers and Electro-Optics 2007 CLEO proceedings 2007, p. 1630, presentation CWF2.
  15. J. Lægsgaard, P. J. Roberts and M. Bache, "Tailoring the Dispersion Properties of Photonic Crystal Fibers," Optical and Quantum Electronics 39, 995-1008 (2007). [CrossRef]
  16. J. Kuhl and J. Heppner, "Compression of femtosecond optical pulses with dielectric multilayer interferometers," IEEE Trans. Quant. Electron. QE-22, 182-185 (1986). [CrossRef]
  17. H. A. Macleod, Thin-film optical filters third edition, (J W Arrowsmith Ltd, Bristol, GB 2001).
  18. J. Fekete, Z. Várallyay and R. Szipőcs, "Design of high-bandwidth one- and two-dimensional photonic bandgap dielectric structures at grazing incidence of light," Appl. Opt. 47, 5330-5336 (2008). [CrossRef] [PubMed]
  19. R. Szipőcs, A. Kőházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. DeBell, L. Mott, A.W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, "Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers," Appl. Phys. B 70, S51-S57 (2000).
  20. K. Saitoh and M. Koshiba, "Leakage loss and group velocity dispersion in air-core photonic bandgap fibers," Opt. Express 11, 3100-3109 (2003). [CrossRef] [PubMed]
  21. K. Saitoh, N.J. Florous, T. Murao, and M. Koshiba, "Realistic design of large-hollow-core photonic band-gap fibers with suppressed higher order modes and surface modes," J. Lightwave Technol. 25, 2440-2447 (2007). [CrossRef]
  22. M. Sumetsky and S. Ramachandran, "Multiple mode conversion and beam shaping with superimposed long period gratings," Opt. Express 16, 402-412 (2008). [CrossRef] [PubMed]
  23. J. C. Jasapara, M. J. Andrejco, A. D. Yablon, J. W. Nicholson, C. Headley, and D. DiGiovanni, "Picosecond pulse amplification in a core-pumped large-mode-area erbium fiber," Opt. Lett. 32, 2429-2431 (2007). [CrossRef] [PubMed]
  24. P. J. Roberts, D. P. Williams, B. J. Mangan, H. Sabert, F. Couny, W. J. Wadsworth, T. A. Birks, J. C. Knight, and P. St. J. Russell, "Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround," Opt. Express,  13, 8277-8285 (2005). [CrossRef] [PubMed]
  25. T. Murao, K. Saitoh, and M. Koshiba, "Structural optimization of air-guiding photonic bandgap fibers for realizing ultimate low loss waveguides," J. Lightwave Technol.,  26, 1602-1612, (2008). [CrossRef]
  26. C. J. Hensley, D. G. Ouzounov, A. L. Gaeta, N. Venkataraman, M. T. Gallagher, and K. W. Koch, "Silica-glass contribution to the effective nonlinearity of hollow-core photonic band-gap fibers," Opt. Express 15, 3507-3512 (2007). [CrossRef] [PubMed]
  27. L. Vincetti, M. Maini, F. Poli, A. Cucinotta, and S. Selleri, "Numerical analysis of hollow core photonic band gap fibers with modified honeycomb lattice," Opt. and Quantum Electron.,  38, 903-912 (2006). [CrossRef]
  28. J. Lægsgaard, N. A. Mortensen, and A. Bjarklev, "Mode areas and field-energy distribution in honeycomb photonic bandgap fibers," J. Opt. Soc. Am. B,  20, 2037-2045 (2003). [CrossRef]
  29. G. P. Agrawal, Nonlinear Fiber Optics, fourth edition (Academic, San Diego, CA, 2007) Chapter 2.
  30. Z. Várallyay, J. Fekete, Á. Bányász and R. Szipőcs, "Optimizing input and output chirps up to the third-order for sub-nanojoule, ultra-short pulse compression in small core area PCF," Appl. Phys. B 86, 567-572 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (1812 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited