OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 14 — Jul. 6, 2009
  • pp: 11898–11904

Theory of energy evolution in laser resonators with saturated gain and non-saturated loss

S. K. Turitsyn  »View Author Affiliations


Optics Express, Vol. 17, Issue 14, pp. 11898-11904 (2009)
http://dx.doi.org/10.1364/OE.17.011898


View Full Text Article

Enhanced HTML    Acrobat PDF (197 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Theory of the energy evolution in laser resonators with saturated gain and non-saturated loss is revisited. An explicit analytical expression for the output energy/average power in terms of the gain saturation energy, cavity loss and small signal gain parameters is derived for a ring cavity configuration.

© 2009 OSA

OCIS Codes
(140.3430) Lasers and laser optics : Laser theory
(190.4360) Nonlinear optics : Nonlinear optics, devices

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: May 29, 2009
Revised Manuscript: June 21, 2009
Manuscript Accepted: June 21, 2009
Published: June 29, 2009

Citation
S. K. Turitsyn, "Theory of energy evolution in laser resonators with saturated gain and non-saturated loss," Opt. Express 17, 11898-11904 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-14-11898


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. E. Siegman, Lasers (University Science Books, 1986).
  2. L. F. Mollenauer, and J. P. Gordon, Solitons in Optical Fibers: Fundamentals and Applications (Academic Press (2006).
  3. A. C. Newell, and J. V. Moloney, Nonlinear Optics (Addison-Wesley Publishing Company, Redwood City,CA, 1992).
  4. A. Hasegawa, and Y. Kodama, Solitons in Optical Communications (Clarendon, Oxford, 1995).
  5. V. E. Zakharov, and E. S. Wabnitz, Optical Solitons: Theoretical Challenges and Industrial Perspectives (Springer-Verlag, Heidelberg, 1998).
  6. H. A. Haus, “Theory of mode locking with a slow saturable absorber,” IEEE J. Quantum Electron. 11(9), 736–746 (1975). [CrossRef]
  7. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Analytic theory of additive pulse and Kerr lens mode locking,” IEEE J. Quantum Electron. 28(10), 2086–2096 (1992), Sh. Namiki, E. P. Ippen, H. A. Haus, and C. X. Yu, “C. X. Yu, “Energy rate equations for mode-locked lasers,” J. Opt. Soc. Am. B 14(8), 2099 (1997). [CrossRef]
  8. A. M. Dunlop, W. J. Firth, D. R. Heatley, and E. M. Wright, “Generalized mean-field or master equation for nonlinear cavities with transverse effects,” Opt. Lett. 21(11), 770–772 (1996). [CrossRef] [PubMed]
  9. J. N. Kutz, “Mode-locked soliton lasers,” SIAM Rev. 48(4), 629–678 (2006). [CrossRef]
  10. N. Akhmediev, and A. Ankiewicz, eds., Dissipative Solitons, Lecture Notes in Physics, (Springer, Berlin-Heidelberg, 2005) Vol. 661.
  11. N. Akhmediev, and A. Ankiewicz, eds., Dissipative Solitons: From optics to biology and medicine, Lecture Notes in Physics, (Springer, Berlin-Heidelberg, 2008). Vol. 751.
  12. J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev, and S. Wabnitz, “Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(4), 4783–4796 (1997). [CrossRef]
  13. A. I. Chernykh and S. K. Turitsyn, “Soliton and collapse regimes of pulse generation in passively mode-locking laser systems,” Opt. Lett. 20(4), 398 (1995). [CrossRef] [PubMed]
  14. L. Kramer, E. A. Kuznetsov, S. Popp, and S. K. Turitsyn, ““Optical pulse collapse in defocusing active medium,” Pisma ZETF 61, 887–892 (1995) (,” JETP Lett. 61, 904 (1995).
  15. I. S. Aranson and L. Kramer, “The world of the complex Ginzburg Landau equation,” Rev. Mod. Phys. 74(1), 99–143 (2002). [CrossRef]
  16. N. N. Rosanov, Spatial Hysteresis and Optical Patterns (Springer, Berlin, 2002).
  17. W. W. Rigrod, “Saturation effects in high-gain lasers,” J. Appl. Phys. 36(8), 2487–2490 (1965). [CrossRef]
  18. F. O. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-similar evolution of parabolic pulses in a laser,” Phys. Rev. Lett. 92(21), 213902 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 4
 
Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited