OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 14 — Jul. 6, 2009
  • pp: 11926–11934

Fabrication of liquid crystal polymer axial waveplates for UV-IR wavelengths

Sarik Nersisyan, Nelson Tabiryan, Diane M. Steeves, and Brian R. Kimball  »View Author Affiliations


Optics Express, Vol. 17, Issue 14, pp. 11926-11934 (2009)
http://dx.doi.org/10.1364/OE.17.011926


View Full Text Article

Enhanced HTML    Acrobat PDF (955 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show the opportunity of fabricating axially symmetric waveplates fine tuned to a desired wavelength. High quality waveplates are obtained using liquid crystal polymer layers on photoaligning substrates extending their functional range from UV to IR wavelengths. We characterize the effect of the waveplate on laser beams showing formation of a doughnut beam with over 240 times attenuation of intensity on the axis. We pay attention that the power density is strongly reduced on the doughnut ring as well and use this opportunity for taking charge coupled devices (CCDs) out of a deep saturation regime. Strong deformation of the beam profile is observed when the vortex axis is shifted towards the periferies of the beam. We demonstrate feasibility of using this phenomenon for shaping the profile of light beams with a set of waveplates.

© OSA

OCIS Codes
(160.3710) Materials : Liquid crystals
(050.4865) Diffraction and gratings : Optical vortices

ToC Category:
Materials

History
Original Manuscript: April 16, 2009
Revised Manuscript: May 29, 2009
Manuscript Accepted: May 29, 2009
Published: June 30, 2009

Citation
Sarik Nersisyan, Nelson Tabiryan, Diane M. Steeves, and Brian R. Kimball, "Fabrication of liquid crystal polymer axial waveplates for UV-IR wavelengths," Opt. Express 17, 11926-11934 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-14-11926


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Yamaguchi, T. Nose, and S. Sato, “Liquid crystal polarizers with axially symmetrical properties,” Jpn. J. Appl. Phys. 28(Part 1), 1730–1731 (1989). [CrossRef]
  2. M. Stalder and M. Schadt, “Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters,” Opt. Lett. 21(23), 1948–1950 (1996). [CrossRef]
  3. L. Marrucci, C. Manzo, and D. Paparo, “Pancharatnam-Berry phase optical elements for wave front shaping in the visible domain: Switchable helical mode generation,” Appl. Phys. Lett. 88, 221102 (1–3) (2006). [CrossRef]
  4. S. C. McEldowney, D. M. Shemo, R. A. Chipman, and P. K. Smith, “Creating vortex retarders using photoaligned liquid crystal polymers,” Opt. Lett. 33(2), 134–136 (2008). [CrossRef]
  5. H. Choi, J. H. Woo and J. W. Wu, “Holographic inscription of helical wavefronts in a liquid crystal polarization grating,” Appl. Phys. Lett. 91, 141112 (1–3) (2007).
  6. R. Bhandari, “Polarization of light and topological phases,” Phys. Rep. 282(1), 1–64 (1997). [CrossRef]
  7. Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, “Space-variant Pancharatnam-Berry phase optical elements with computer-generated subwavelength gratings,” Opt. Lett. 27(13), 1141–1143 (2002). [CrossRef]
  8. A. Jesacher, A. Schwaighofer, S. Fürhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Schwaighofer, S. Fuerhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte, “Wavefront correction of spatial light modulators using an optical vortex image,” Opt. Express 15(9), 5801–5808 (2007). [CrossRef]
  9. G. A. Swartzlander., “Peering into darkness with a vortex spatial filter,” Opt. Lett. 26(8), 497–499 (2001). [CrossRef]
  10. S. Bernet, A. Jesacher, S. Fuerhapter, C. Maurer, and M. Ritsch-Marte, “Quantitative imaging of complex samples by spiral phase contrast microscopy,” Opt. Express 14(9), 3792–3805 (2006). [CrossRef]
  11. A. V. Nesterov and V. G. Niziev, “Laser beams with axially symmetric polarization,” Phys. D: Appl. Phys. 33(15), 1817–1822 (2000). [CrossRef]
  12. J. H. Lee, H. R. Kim, and S. D. Lee, “Polarization-insensitive wavelength selection in an axially symmetric liquid-crystal Fabry-Perot filter,” Appl. Phys. Lett. 75(6), 859–861 (1999). [CrossRef]
  13. G. Sinclair, P. Jordan, J. Courtial, M. Padgett, J. Cooper, and Z. J. Laczik, “Assembly of 3-dimensional structures using programmable holographic optical tweezers,” Opt. Express 12(22), 5475–5480 (2004). [CrossRef]
  14. S. C. Chapin, V. Germain, and E. R. Dufresne, “Automated trapping, assembly, and sorting with holographic optical tweezers,” Opt. Express 14(26), 13095–13100 (2006). [CrossRef]
  15. D. Ganic, X. Gan, M. Gu, M. Hain, S. Somalingam, S. Stankovic, and T. Tschudi, “Generation of doughnut laser beams by use of a liquid-crystal cell with a conversion efficiency near 100%,” Opt. Lett. 27(15), 1351–1353 (2002). [CrossRef]
  16. Q. Wang, X. W. Sun, P. Shum, and X. J. Yin, “Dynamic switching of optical vortices with dynamic gamma-correction liquid crystal spiral phase plate,” Opt. Express 13(25), 10285–10291 (2005). [CrossRef]
  17. H. Ren, Y.-H. Lin and S.-T. Wu, “Linear to axial or radial polarization conversion using a liquid crystal gel,” Appl. Phys. Lett. 89, 051114 (1–3) (2006). [CrossRef]
  18. S. Masuda, T. Nose, R. Yamaguchi, and S. Sato, “Polarization converting devices using a UV curable liquid crystal,” Proc. SPIE 2873, 301–304 (1996).
  19. Y. Y. Tzeng, S.-W. Ke, C.-L. Ting, A. Y.-G. Fuh, and T.-H. Lin, “Axially symmetric polarization converters based on photo-aligned liquid crystal films,” Opt. Express 16(6), 3768–3775 (2008). [CrossRef]
  20. S.-W. Ko, Y.-Y. Tzeng, C.-L. Ting, A. Y.-G. Fuh, and T.-H. Lin, “Axially symmetric liquid crystal devices based on double-side photo-alignment,” Opt. Express 16(24), 19643–19648 (2008). [CrossRef]
  21. S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Optical axis gratings in liquid crystals and their use for polarization insensitive optical switching,” J. Nonlinear Opt. Phys. Mater. 18(01), 1–47 (2009). [CrossRef]
  22. S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, and B. R. Kimball, “Reproduction of polarization gratings,” Appl. Opt. (Submitted to).
  23. V. V. Kotlyar, A. A. Kovalev, R. V. Skidanov, S. N. Khonina, O. Yu. Moiseev, and V. A. Soifer, “Simple optical vortices formed by a spiral phase plate,” J. Opt. Technol. 74, 686–693 (2007). [CrossRef]
  24. J. F. Nye and M. V. Berry, ““Dislocations in wave trains,” Proc. Roy. Soc. London, Ser,” A 336, 165–190 (1974).
  25. N. B. Baranova, B. Ya, and A. V. Zel’dovich, “Mamayev, N. F. Pilipetskii, and V. V. Shkukov, “Dislocations of the wavefront of a speckle-inhomogeneous field (theory and experiment),” JETP Lett. 33, 195–199 (1981).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited