OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 14 — Jul. 6, 2009
  • pp: 11944–11957

Nanoparticle Plasmonics for 2D-Photovoltaics: Mechanisms, Optimization, and Limits

Carl Hägglund and Bengt Kasemo  »View Author Affiliations

Optics Express, Vol. 17, Issue 14, pp. 11944-11957 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (820 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Plasmonic nanostructures placed within or near photovoltaic (PV) layers are of high current interest for improving thin film solar cells. We demonstrate, by electrodynamics calculations, the feasibility of a new class of essentially two dimensional (2D) solar cells based on the very large optical cross sections of plasmonic nanoparticles. Conditions for inducing absorption in extremely thin PV layers via plasmon near-fields, are optimized in 2D-arrays of (i) core-shell particles, and (ii) plasmonic particles on planar layers. At the plasmon resonance, a pronounced optimum is found for the extinction coefficient of the PV material. We also characterize the influence of the dielectric environment, PV layer thickness and nanoparticle shape, size and spatial distribution. The response of the system is close to that of a 2D effective medium layer, and subject to a 50% absorption limit when the dielectric environment around the 2D layer is symmetric. In this case, a plasmon induced absorption of about 40% is demonstrated in PV layers as thin as 10 nm, using silver nanoparticle arrays of only 1 nm effective thickness. In an asymmetric environment, the useful absorption may be increased significantly for the same layer thicknesses. These new types of essentially 2D solar cells are concluded to have a large potential for reducing solar electricity costs.

© 2009 Optical Society of America

OCIS Codes
(040.5350) Detectors : Photovoltaic
(230.0230) Optical devices : Optical devices
(240.6680) Optics at surfaces : Surface plasmons
(260.0260) Physical optics : Physical optics
(350.6050) Other areas of optics : Solar energy
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:

Original Manuscript: May 4, 2009
Revised Manuscript: June 23, 2009
Manuscript Accepted: June 24, 2009
Published: June 30, 2009

Carl Hägglund and Bengt Kasemo, "Nanoparticle Plasmonics for 2D-Photovoltaics: Mechanisms, Optimization, and Limits," Opt. Express 17, 11944-11957 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Sanden, "Solar solution: the next industrial revolution," Materials Today 11, 22-24 (2008). [CrossRef]
  2. H. J. Queisser, "Photovoltaic conversion at reduced dimensions," Physica E 14, 1-10 (2002).
  3. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Springer Series in Materials Science (Springer, New York, 1995), Vol. 25.
  4. C. Hägglund, "Nanoparticle plasmon influence on the charge carrier generation in solar cells," Doctoral Thesis (Chalmers University of Technology, Göteborg, 2008).
  5. J. J. Sakurai, Modern Quantum Mechanics, Revised ed. (Addison-Wesley Publishing Company, Reading, Massachusetts, 1994).
  6. C. Hägglund, M. Zäch, and B. Kasemo, "Enhanced charge carrier generation in dye sensitized solar cells by nanoparticle plasmons," Appl. Phys. Lett. 92, 013113 (2008). [CrossRef]
  7. C. Hägglund, M. Zäch, G. Petersson, and B. Kasemo, "Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons," Appl. Phys. Lett. 92, 053110 (2008). [CrossRef]
  8. L. Eurenius, C. Hägglund, B. Kasemo, E. Olsson, and D. Chakarov, "Grating formation by metal nanoparticle-mediated coupling of light into waveguided modes," Nat. Photonics 2, 360-364 (2008). [CrossRef]
  9. F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. von Plessen, and F. Lederer, "On the use of localized plasmon polaritons in solar cells," Phys. Status Solidi A-Appl. Mater. Scie. 205, 2844-2861 (2008). [CrossRef]
  10. K. R. Catchpole and A. Polman, "Design principles for particle plasmon enhanced solar cells," Appl. Phys. Lett. 93, 191113 (2008). [CrossRef]
  11. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, "Plasmonic Nanostructure Design for Efficient Light Coupling into Solar Cells," Nano Lett. 8, 4391-4397 (2008). [CrossRef]
  12. Y. A. Akimov, K. Ostrikov, and E. P. Li, "Surface Plasmon Enhancement of Optical Absorption in Thin-Film Silicon Solar Cells," Plasmonics 4, 107-113 (2009). [CrossRef]
  13. H. R. Stuart and D. G. Hall, "Absorption enhancement in silicon-on-insulator waveguides using metal island films," Appl. Phys. Lett. 69, 2327-2329 (1996). [CrossRef]
  14. D. M. Schaadt, B. Feng, and E. T. Yu, "Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles," Appl. Phys. Lett. 86, 063106 (2005). [CrossRef]
  15. B. P. Rand, P. Peumans, and S. R. Forrest, "Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters," J. Appl. Phys. 96, 7519-7526 (2004). [CrossRef]
  16. J. B. Khurgin, G. Sun, and R. A. Soref, "Practical limits of absorption enhancement near metal nanoparticles," Appl. Phys. Lett. 94, 071103 (2009). [CrossRef]
  17. J. R. Bolton and M. D. Archer, "Requirements for Ideal Performance of Photochemical and Photovoltaic Solar Energy Converters," J. Phys. Chem. 94, 8028-8036 (1990). [CrossRef]
  18. M. Grätzel, "Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells," J. Photochem. Photobiol. A-Chem. 164, 3-14 (2004). [CrossRef]
  19. P. B. Johnson and R. W. Christy, "Optical-constants of noble-metals," Phys. Rev. B 6, 4370-4379 (1972). [CrossRef]
  20. F. Wang and Y. R. Shen, "General properties of local plasmons in metal nanostructures," Phys. Rev. Lett. 97, 206806 (2006). [CrossRef] [PubMed]
  21. D. E. Aspnes, "Chapter 12. Optical properties.," in Properties of Crystalline Silicon, R. Hull, ed. (INSPEC, IEE, London, 1999).
  22. L. A. A. Pettersson, S. Ghosh, and O. Inganas, "Optical anisotropy in thin films of poly(3,4-ethylenedioxythiophene)-poly(4-styrenesulfonate)," Organic Electronics 3, 143-148 (2002). [CrossRef]
  23. U. Zhokhavets, R. Goldhahn, G. Gobsch, M. Al-Ibrahim, H. K. Roth, S. Sensfuss, E. Klemm, and D. A. M. Egbe, "Anisotropic optical properties of conjugated polymer and polymer/fullerene films," Thin Solid Films 444, 215-220 (2003). [CrossRef]
  24. H. Hoppe, N. S. Sariciftci, and D. Meissner, "Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells," Mol. Cryst. Liquid Cryst. 385, 233-239 (2002). [CrossRef]
  25. M. I. Alonso, K. Wakita, J. Pascual, M. Garriga, and N. Yamamoto, "Optical functions and electronic structure of CuInSe2, CuGaSe2, CuInS2, and CuGaS2," Phys. Rev. B 63, 075203 (2001). [CrossRef]
  26. A. Dmitriev, C. Hägglund, S. Chen, H. Fredriksson, T. Pakizeh, M. Käll, and D. S. Sutherland, "Enhanced Nanoplasmonic Optical Sensors with Reduced Substrate Effect," Nano Lett. 8, 3893-3898 (2008). [CrossRef] [PubMed]
  27. B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, "Metal nanoparticle gratings: Influence of dipolar particle interaction on the plasmon resonance," Phys. Rev. Lett. 84, 4721-4724 (2000). [CrossRef] [PubMed]
  28. This is an easily verified consequence of the governing equation. See for instance A. J. Mallinckrodt, "The Sinusoidally Forced, Linearly Damped, Simple Harmonic Oscillator" (2000), retrieved June 16, 2009, http://www.csupomona.edu/~ajm/classes/phyXXX/dho.pdf.
  29. R. Gomez-Medina, M. Laroche, and J. J. Saenz, "Extraordinary optical reflection from sub-wavelength cylinder arrays," Opt. Express 14, 3730-3737 (2006). [CrossRef] [PubMed]
  30. M. Laroche, S. Albaladejo, R. Gomez-Medina, and J. J. Saenz, "Tuning the optical response of nanocylinder arrays: An analytical study," Phys. Rev. B 74, 245422 (2006). [CrossRef]
  31. F. J. G. de Abajo, "Colloquium: Light scattering by particle and hole arrays," Rev. Mod. Phys. 79, 1267-1290 (2007). [CrossRef]
  32. Carl Hägglund, Dept. of Applied Physics, Chalmers University of Technology, Fysikgränd 3, 41296 Göteborg, Sweden, S. Peter Apell and Bengt Kasemo are preparing a manuscript to be called "Maximized optical absorption in the thin film limit and its application to plasmon based 2D-photovoltaics".
  33. A reflective layer placed immediately behind the particle array results in destructive interference and reduced absorption in the PV layer.
  34. A. Goetzberger, J. Goldschmidt, C., M. Peters, and P. Löper, "Light trapping, a new approach to spectrum splitting," Sol. Energy Mater. Sol. Cells 92,1570-1578 (2008). [CrossRef]
  35. A. O. Pinchuk and G. C. Schatz, "Nanoparticle optical properties: Far- and near-field electrodynamic coupling in a chain of silver spherical nanoparticles," Mater. Sci. Eng. B-Adv. Funct.Solid-State Mater. 149, 251-258 (2008).
  36. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, Weinheim, 2004).
  37. C. L. Haynes, A. D. McFarland, L. L. Zhao, R. P. Van Duyne, G. C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Kall, "Nanoparticle optics: The importance of radiative dipole coupling in two-dimensional nanoparticle arrays," J. Phys. Chem. B 107, 7337-7342 (2003). [CrossRef]
  38. I. A. Larkin, M. I. Stockman, M. Achermann, and V. I. Klimov, "Dipolar emitters at nanoscale proximity of metal surfaces: Giant enhancement of relaxation in microscopic theory," Phys. Rev. B 69, 121403(R) (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited