OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 14 — Jul. 6, 2009
  • pp: 12090–12108

Security of a discretely signaled continuous variable quantum key distribution protocol for high rate systems

Zheshen Zhang and Paul L. Voss  »View Author Affiliations


Optics Express, Vol. 17, Issue 14, pp. 12090-12108 (2009)
http://dx.doi.org/10.1364/OE.17.012090


View Full Text Article

Enhanced HTML    Acrobat PDF (1474 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a continuous variable based quantum key distribution protocol that makes use of discretely signaled coherent light and reverse error reconciliation. We present a rigorous security proof against collective attacks with realistic lossy, noisy quantum channels, imperfect detector efficiency, and detector electronic noise. This protocol is promising for convenient, high-speed operation at link distances up to 50 km with the use of post-selection.

© 2009 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: April 1, 2009
Revised Manuscript: May 28, 2009
Manuscript Accepted: May 30, 2009
Published: July 2, 2009

Citation
Zheshen Zhang and Paul L. Voss, "Security of a discretely signaled continuous variable quantum key distribution protocol for high rate systems," Opt. Express 17, 12090-12108 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-14-12090


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. H. Bennett and G. Grassard, "Quantum Cryptography: Public Key Distribution and Coin Tossing," in Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing (IEEE, New York, 1984), pp. 175-179.
  2. A. K. Ekert, "Quantum Cryptography Based on Bell’s Theorem," Phys. Rev. Lett. 67, 661-663 (1991). [CrossRef] [PubMed]
  3. M. A. Nielsen and I. L. Chuang, ‘Quantum Computation and Quantum Information, (Cambridge University Press, UK, 2000).
  4. S. L. Braunstein and P. Van Loock, "Quantum information with continuous variables," Rev. Mod. Phys. 77, 513-577 (2005). [CrossRef]
  5. F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, "Quantum key distribution using gaussian-modulated coherent states," Nature 421, 238-241 (2003). [CrossRef] [PubMed]
  6. N. J. Cerf, M. Levy, and G. Van Assche, "Quantum distribution of Gaussian keys using squeezed states," Phys. Rev. A 63, 052311 (2001). [CrossRef]
  7. F. Grosshans and P. Grangier, "Reverse reconciliation protocols for quantum cryptography with continuous variables,"quant-ph/0204127 (2002).
  8. F. Grosshans and P. Grangier, "Continuous Variable Quantum Cryptography Using Coherent States," Phys. Rev. Lett. 88, 057902 (2002) [CrossRef] [PubMed]
  9. R. Namiki and T. Hirano, "Efficient-phase-encoding protocols for continuous-variable quantum key distribution using coherent states and postselection," Phys. Rev. A 74, 032302 (2006). [CrossRef]
  10. F. Grosshans, "Collective Attacks and Unconditional Security in Continuous Variable Quantum Key Distribution," Phys. Rev. Lett. 94, 020504 (2005). [CrossRef] [PubMed]
  11. M. Navascues and A. Acın, "SecurityBounds for Continuous Variables Quantum Key Distribution," Phys. Rev. Lett. 94, 020505 (2005). [CrossRef] [PubMed]
  12. R. Garcıa-Patron and N. J. Cerf, "Unconditional Optimality of Gaussian Attacks against Continuous-Variable Quantum Key Distribution," Phys. Rev. Lett. 97, 190503 (2006). [CrossRef] [PubMed]
  13. M. Navascues, F. Grosshans, and A. Acın, "Optimality of Gaussian Attacks in Continuous-Variable Quantum Cryptography," Phys. Rev. Lett. 97, 190502 (2006). [CrossRef] [PubMed]
  14. J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, "Quantum key distribution over 25 km with an all-fiber continuous-variable system," Phys. Rev. A 76, 042305 (2007). [CrossRef]
  15. M. Heid and N. Lutkenhaus, "Security of coherent-state quantum cryptography in the presence of Gaussian noise" Phys. Rev. A 76, 022313 (2007). [CrossRef]
  16. V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lutkenhaus, and M. Peev, "Title: A Framework for Practical Quantum Cryptography"arXiv:0802.4155(2008).
  17. Y. Zhao, M. Heid, J. Rigas, and N. Lutkenhaus, "Asymptotic security of binary modulated continuous-variable quantum key distribution under collective attacks," Phys. Rev. A 79, 012307 (2009). [CrossRef]
  18. Ch. Silberhorn, T. C. Ralph, N. Lutkenhaus, and G. Leuchs, "Continuous Variable Quantum Cryptography: Beating the 3 dB Loss Limit" Phys. Rev. A 89, 167901 (2002).
  19. C. Weedbrook, A. M. Lance, W. P. Bowen, T. Symul, T. C. Ralph, and P. K. Lam, "Coherent-state quantum key distribution without random basis switching" Phys. Rev. A 73,022316 (2006). [CrossRef]
  20. A. M. Lance, T. Symul, V. Sharma, C. Weedbrook, T. C. Ralph, P. K. Lam, "No-Switching Quantum Key Distribution Using Broadband Modulated Coherent Light," Phys. Rev. Lett. 95, 180503 (2005). [CrossRef] [PubMed]
  21. T. Symul, D. J. Alton, S. M. Assad, A. M. Lance, C. Weedbrook, T. C. Ralph, and P. K. Lam, "Experimental demonstration of post-selection-based continuous-variable quantum key distribution in the presence of Gaussian noise," Phys. Rev. A 76, 030303(R) (2007). [CrossRef]
  22. J. Singh, O. Dabeer and U. Madhow, "Capacity of the Discrete-Time AWGN Channel Under Output Quantization," arXiv:0801.1185v1 (2008).
  23. V. Buzek and G. Drobny, "Quantum tomography via the MaxEnt principle," J. Mod. Opt. 47, 2823-2839 (2000).
  24. R. Ahlswede and P. Lober, "Quantum data processing," IEEE Trans. Inf. Theory,  47, 474-478 (2001). [CrossRef]
  25. K. Khandekar and R. J. McEliece, "On the complexity of reliable communication on the erasure channel," in Proc. IEEE Int. Symp. Information Theory, Washington, DC, Jun. 2001, p. 1.
  26. Z. Zhang and P. L. Voss, "A path towards 10 Gb/s continuous variable QKD," LPHYS08, Trondheim, Norway. July 2008.
  27. J. Janszky, P. Domokos, S. Szabo, and P. Adam, "Quantum-state engineering via discrete coherent-state superpositions," Phys. Rev. A 51, 5 (1995). [CrossRef]
  28. R. Jozsa and J. Schlienz, "Distinguishability of States and von Neumann Entropy," arXiv:quant-ph/9911009v1, 3 (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited