OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 14 — Jul. 6, 2009
  • pp: 12121–12131

Development of a non-uniform discrete Fourier transform based high speed spectral domain optical coherence tomography system

Kai Wang, Zhihua Ding, Tong Wu, Chuan Wang, Jie Meng, Minghui Chen, and Lei Xu  »View Author Affiliations

Optics Express, Vol. 17, Issue 14, pp. 12121-12131 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1083 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We develop a high speed spectral domain optical coherence tomography (SD-OCT) system based on a custom-built spectrometer and non-uniform discrete Fourier transform (NDFT) to realize minimized depth dependent sensitivity fall-off. After precise spectral calibration of the spectrometer, NDFT of the acquired spectral data is adopted for image reconstruction. The spectrometer is able to measure a wavelength range of about 138nm with a spectral resolution of 0.0674nm at central wavelength of 835nm, corresponding to an axial imaging range of 2.56mm in air. Zemax simulations and sensitivity fall-off measurements under two alignment states of the spectrometer are given. Both theoretical simulations and experiments are done to study the depth dependent sensitivity of the developed system based on NDFT in contrast to those based on conventional discrete Fourier transform (DFT) with and without interpolation. In vivo imaging on human finger from volunteer is conducted at A-scan rate of 29 kHz and reconstruction is done based on different methods. The comparing results confirm that reconstruction method based on NDFT indeed improves sensitivity especially at large depth while maintaining the coherence-function-limited depth resolution.

© 2009 OSA

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(070.2025) Fourier optics and signal processing : Discrete optical signal processing

ToC Category:
Imaging Systems

Original Manuscript: April 23, 2009
Revised Manuscript: May 27, 2009
Manuscript Accepted: June 22, 2009
Published: July 2, 2009

Virtual Issues
Vol. 4, Iss. 9 Virtual Journal for Biomedical Optics

Kai Wang, Zhihua Ding, Tong Wu, Chuan Wang, Jie Meng, Minghui Chen, and Lei Xu, "Development of a non-uniform discrete Fourier transform based high speed spectral domain optical coherence tomography system," Opt. Express 17, 12121-12131 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  2. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 7457–7463 (2002). [CrossRef]
  3. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-8-889 . [CrossRef] [PubMed]
  4. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003). [CrossRef] [PubMed]
  5. B. Park, C. Mark, P. B. Cense, S.-H. Yun, M. Mujat, G. Tearney, B. Bouma, and J. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3μm,” Opt. Express 13(11), 3931–3944 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-11-3931 . [CrossRef] [PubMed]
  6. Z. Wang, Z. Yuan, H. Wang, and Y. Pan, “Increasing the imaging depth of spectral-domain OCT by using interpixel shift technique,” Opt. Express 14(16), 7014–7023 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-16-7014 . [CrossRef] [PubMed]
  7. T. Bajraszewski, M. Wojtkowski, M. Szkulmowski, A. Szkulmowska, R. Huber, and A. Kowalczyk, “Improved spectral optical coherence tomography using optical frequency comb,” Opt. Express 16(6), 4163–4176 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-6-4163 . [CrossRef] [PubMed]
  8. Z. Hu, Y. Pan, and A. M. Rollins, “Analytical model of spectrometer-based two-beam spectral interferometry,” Appl. Opt. 46(35), 8499–8505 (2007). [CrossRef] [PubMed]
  9. N. Nassif, B. Cense, B. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, and J. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Express 12(3), 367–376 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-3-367 . [CrossRef] [PubMed]
  10. R. Leitgeb, W. Drexler, A. Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, and A. Fercher, “Ultrahigh resolution Fourier domain optical coherence tomography,” Opt. Express 12(10), 2156–2165 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-10-2156 . [CrossRef] [PubMed]
  11. B. Hofer, B. Považay, B. Hermann, A. Unterhuber, G. Matz, F. Hlawatsch, and W. Drexler, “Signal post processing in frequency domain OCT and OCM using a filter bank approach,” Proc. SPIE 6443, 64430O1–6 (2007).
  12. Z. Hu and A. M. Rollins, “Fourier domain optical coherence tomography with a linear-in-wavenumber spectrometer,” Opt. Lett. 32(24), 3525–3527 (2007). [CrossRef] [PubMed]
  13. S. Yun, G. Tearney, B. Bouma, B. Park, and J. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 mum wavelength,” Opt. Express 11(26), 3598–3604 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-26-3598 . [CrossRef] [PubMed]
  14. P. M. Zwartjes and M. D. Sacchi, “Fourier reconstruction of nonuniformly sampled, aliased seismic data,” Geophysics 72(1), V21–V32 (2007). [CrossRef]
  15. R. K. Wang and Z. H. Ma, “A practical approach to eliminate autocorrelation artefacts for volume-rate spectral domain optical coherence tomography,” Phys. Med. Biol. 51(12), 3231–3239 (2006). [CrossRef] [PubMed]
  16. A. Szkulmowska, M. Wojtkowski, I. Gorczynska, T. Bajraszewski, M. Szkulmowski, P. Targowski, A. Kowalczyk, and J. J. Kaluzny, “Coherent noise free ophthalmic imaging by Spectral Optical Coherence Tomography,” J. Phys. D Appl. Phys. 38(15), 2006–2011 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited