OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 15 — Jul. 20, 2009
  • pp: 12259–12268

Computation lithography: virtual reality and virtual virtuality

Edmund Y. Lam and Alfred K. K. Wong  »View Author Affiliations


Optics Express, Vol. 17, Issue 15, pp. 12259-12268 (2009)
http://dx.doi.org/10.1364/OE.17.012259


View Full Text Article

Enhanced HTML    Acrobat PDF (297 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Computation lithography is enabled by a combination of physical understanding, mathematical abstraction, and implementation simplification. An application in the virtual world of computation lithography can be a virtual reality or a virtual virtuality depending on its engineering sensible-ness and technical feasibility. Examples under consideration include design-for-manufacturability and inverse lithography.

© 2009 Optical Society of America

OCIS Codes
(110.3960) Imaging systems : Microlithography
(110.5220) Imaging systems : Photolithography
(110.1758) Imaging systems : Computational imaging

ToC Category:
Imaging Systems

History
Original Manuscript: March 3, 2009
Revised Manuscript: April 29, 2009
Manuscript Accepted: June 22, 2009
Published: July 6, 2009

Citation
Edmund Y. Lam and Alfred K. Wong, "Computation lithography: virtual reality and virtual virtuality," Opt. Express 17, 12259-12268 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-15-12259


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. F. H. Dill, W. Hornberger, P. Hauge, and J. Shaw, "Characterization of positive photoresists," IEEE Trans. Electron Devices ED-22(7), 445-452 (1975).
  2. K. L. Konnerth and F. H. Dill, "In-situ measurement of dielectric thickness during etching or developing process," IEEE Trans. Electron Devices ED-22(7), 452-456 (1975).
  3. F. Dill, "The basis for lithographic modeling," in Proc. SPIE, B. W. Smith, ed., vol. 5754, pp. 377-382 (2005).
  4. C. A. Mack, "Thirty years of lithography simulation," in Proc. SPIE, B. W. Smith, ed., vol. 5754, pp. 1-12 (2005).
  5. A. Neureuther, "If it moves, simulate it!" in Proc. SPIE, H. J. Levinson andM. V. Dusa, eds., vol. 6924, p. 692402 (2008).
  6. M. Yeung, "Modeling aerial images in two and three dimensions," in Proc. Kodak Microelectronics, pp. 115-126 (1985).
  7. Q1. D. Nyyssonen and C. P. Kirk, "Optical microscope imaging of lines patterned in thick layers with variable edge geometry: theory," J. Opt. Soc. Am. A 5(8), 1270-1280 (1988).
  8. K. Lucas, C.-M. Yuan, and A. Strojwas, "A Rigorous and Practical Vector Model for Phase Shifting Masks in Optical Lithography," in Proc. SPIE, J. D. Cuthbert, ed., vol. 1674, pp. 252-263 (1992).
  9. Q2. T. Matsuzawa, A. Moniwa, N. Hasegawa, and H. Sunami, "Two-Dimensional Simulation of Photolithography on Reflective Stepped Substrate," IEEE Trans. Comput.-Aided Des. Int. Cir. Sys. 6(3), 446-451 (1987).
  10. H. P. Urbach and D. A. Bernard, "Modeling latent image formation in photolithography using the Helmholtz equation," in Proc. SPIE, V. Pol, ed., vol. 1264, pp. 278-293 (1990).
  11. K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media," IEEE Trans. Antennas Propag. 14, 302-307 (1966).
  12. Q3. R. Guerrieri, K. H. Tadros, J. Gamelin, and A. Neureuther, "Massively parallel algorithms for scattering in optical lithography," IEEE Trans. Comput.-Aided Des. Int. Cir. Sys. 10(9), 1091-1100 (1991).
  13. J. A. Sethian, "Fast marching level set methods for three-dimensional photolithography development," in Proc. SPIE, G. Fuller, ed., vol. 2726, pp. 262-272 (1996).
  14. S. Osher and J. A. Sethian, "Fronts Propagating with Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations," J. Comput. Phys. 79, 12-49 (1988).
  15. J. F. Chen, T. Laidig, K. Wampler, and R. Caldwell, "Optical proximity correction for intermediate-pitch features using sub-resolution scattering bars," J. Vac. Sci. Technol. B 15(6), 2426-2433 (1997).
  16. O. Otto and R. Henderson, "Advances in process matching for rules-based optical proximity correction," in Proc. SPIE, vol. 2884, pp. 425-434 (1996).
  17. N. Cobb and A. Zakhor, "Experimental Results on Optical Proximity Correction with Variable Threshold Resist Model," in Proc. SPIE, G. Fuller, ed., vol. 3051, pp. 458-468 (1997).
  18. M. Rieger and J. Stirniman, "Mask fabrication rules for proximity corrected patterns," in Proc. SPIE, vol. 2884, pp. 323-332 (1996).
  19. T. Waas, H. Eisenmann, and H. Hartmann, "Proximity Correction for high CD-Accuracy and Process Tolerance," in Proc. Symposium on Nanocircuit Engineering (1994).
  20. H.-Y. Liu, L. Karklin, Y.-T. Wang, and Y. C. Pati, "Application of alternating phase-shifting masks to 140 nm Gate Patterning II: Mask design and manufacturing tolerances," in Proc. SPIE, vol. 3334, pp. 2-14 (1998).
  21. H. Gamo, "Matrix Treatment of Partial Coherence," in Progress in Optics, E. Wolf, ed., vol. 3, pp. 187-332 (North-Holland, 1964).
  22. Q4. Y. C. Pati, A. A. Ghazanfarian, and R. F. Pease, "Exploiting Structure in Fast Aerial Image Computation for Integrated Circuit Patterns," IEEE Trans. Semi. Manufactur. 10(1), 62-74 (1997).
  23. A. E. Rosenbluth, G. Gallatin, R. Gordon, W. Hinsberg, J. Hoffnagle, F. Houle, K. Lai, A. Lvov, M. Sanchez, and N. Seong, "Fast calculation of images for high numerical aperture lithography," in Proc. SPIE, B. Smith, ed., vol. 5377, pp. 615-628 (2004).
  24. M. Born and E. Wolf, Principles of Optics, pp. 491-555, sixth ed. (Pergamon Press, 1980).
  25. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts and Company, 2004).
  26. A. K. Wong, Resolution Enhancement Techniques in Optical Lithography (SPIE Press, 2001).
  27. A. K. Wong, Optical Imaging in Projection Microlithography (SPIE Press, 2005).
  28. J. Kim and M. Fan, "Hotspot detection on post-OPC layout using full-chip simulation-based verification tool: a case study with aerial image simulation," in Proc. SPIE, K. R. Kimmel and W. Staud, eds., vol. 5256, pp. 919-925 (2003).
  29. S. D. Shang, Y. Granik, N. B. Cobb, W. Maurer, Y. Cui, L. W. Liebmann, J. M. Oberschmidt, R. N. Singh, and B. R. Vampatella, "Failure prediction across process window for robust OPC," in Proc. SPIE, A. Yen, ed., vol. 5040, pp. 431-440 (2003).
  30. H. Mashita, T. Kotani, F. Nakajima, H. Mukai, K. Sato, S. Tanaka, K. Hashimoto, and S. Inoue, "Tool-induced hotspot fixing flow for high volume products," in Proc. SPIE, vol. 7028, p. 70283I (2008).
  31. A. K. K. Wong and E. Y. Lam, "The Nebulous Hotspot and Algorithm Variability," in Proc. SPIE, vol. 7275, p. 727509 (2009).
  32. J. H. Huang, Z. H. Lui, M. C. Jeng, P. K. Ko, and C. Hu, "A Robust Physical and Predictive Model for Deep- Submicrometer MOS Circuit Simulation," Master’s thesis, University of California, Berkeley (1993). Memorandum No. UCB/ERL M93/57.
  33. S. Banerjee, P. Elakkumanan, L. W. Liebmann, J. A. Culp, and M. Orshansky, "Electrically driven optical proximity correction," in Proc. SPIE, V. K. Singh and M. L. Rieger, eds., vol. 6925, p. 69251W (2008).
  34. L. Pang, Y. Liu, and D. Abrams, "Inverse lithography technology (ILT): What is the impact to the photomask industry?" in Proc. SPIE, M. Hoga, ed., vol. 6283, p. 62830X (2006).
  35. S. H. Chan, A. K. Wong, and E. Y. Lam, "Initialization for robust inverse synthesis of phase-shifting masks in optical projection lithography," Opt. Express 16, 14,746-14,760 (2008).
  36. A. Poonawala and P. Milanfar, "Mask design for optical microlithography—an inverse imaging problem," IEEE Trans. Image Process. 16, 774-788 (2007). [PubMed]
  37. N. Jia, A. K. Wong, and E. Y. Lam, "Robust Photomask Design with Defocus Variation Using Inverse Synthesis," in Proc. SPIE, vol. 7140, p. 71401W (2008).
  38. Q5. E. Y. Lam and J. W. Goodman, "Iterative Statistical Approach to Blind Image Deconvolution," J. Opt. Soc. Am. A 17(7), 1177-1184 (2000).
  39. B. Yenikaya and A. Sezginer, "A rigorous method to determine printability of a target layout," in Proc. SPIE, A. K. K. Wong and V. K. Singh, eds., vol. 6521, p. 652112 (2007).
  40. Q6. A. E. Rosenbluth, S. Bukofsky, C. Fonseca, M. Hibbs, K. Lai, A. F. Molless, R. N. Singh, and A. K. K. Wong, "Optimum mask and source patterns to print a given shape," J. Microlithogr., Microfabr., Microsyst. 1(1), 13-30 (2002).
  41. W. H. Arnold, "Guest Editorial: Special Section on Double-Patterning Lithography," J. Micro/Nanolith. MEMS MOEMS 8(1), 011,001 (2009).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited