OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 15 — Jul. 20, 2009
  • pp: 12315–12322

Surface plasmon polariton resonance and transmission enhancement of light through subwavelength slit arrays in metallic films

Myeong-Woo Kim, Teun-Teun Kim, Jae-Eun Kim, and Hae Yong Park  »View Author Affiliations

Optics Express, Vol. 17, Issue 15, pp. 12315-12322 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (336 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Abstract: In this study, we present experimentally measured transmission enhancement of microwaves through periodic slit arrays in metallic films. Enhanced transmission peaks and sharp transmission dips are clearly observed around the theoretically expected surface plasmon polariton(SPP) resonance frequencies. Dependence of the transmittance spectra on the geometrical properties of slits is also demonstrated by varying the slit width, slit periodicity and the thickness of metallic films. Transmission peaks and dips are originated from the coupling between the incident light and SPPs which are caused by the slit array that acts like a grating coupler. The obtained results are theoretically explained by solving the Maxwell’s equations and by the diffraction theory with appropriate boundary conditions, and they are in good agreement with those calculated by the finite-difference time-domain method.

© 2009 OSA

OCIS Codes
(240.0310) Optics at surfaces : Thin films
(240.6680) Optics at surfaces : Surface plasmons
(260.3910) Physical optics : Metal optics

ToC Category:
Optics at Surfaces

Original Manuscript: May 20, 2009
Revised Manuscript: June 10, 2009
Manuscript Accepted: June 10, 2009
Published: July 6, 2009

Myeong-Woo Kim, Teun-Teun Kim, Jae-Eun Kim, and Hae Yong Park, "Surface plasmon polariton resonance and transmission enhancement of light through subwavelength slit arrays in metallic films," Opt. Express 17, 12315-12322 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998). [CrossRef]
  2. H. F. Ghaemi, T. Thio, D. E. Grupp, and H. J. Lezec, “Surface plasmon enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998). [CrossRef]
  3. H. A. Bethe, “Theory of Diffraction by Small Holes,” Phys. Rev. 66(7-8), 163–182 (1944). [CrossRef]
  4. S. Blair and A. Nahata, “Introduction,” Opt. Express 12(16), 3618 (2004). [CrossRef] [PubMed]
  5. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007). [CrossRef] [PubMed]
  6. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001). [CrossRef] [PubMed]
  7. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004). [CrossRef] [PubMed]
  8. Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280(1), 10–15 (2007). [CrossRef]
  9. N. García and M. Bai, “Theory of transmission of light by sub-wavelength cylindrical holes in metallic films,” Opt. Express 14(21), 10028–10042 (2006). [CrossRef] [PubMed]
  10. C. Genet, M. P. van Exter, and J. P. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commun. 225(4-6), 331–336 (2003). [CrossRef]
  11. Y. Chen, Y. Wang, Y. Zhang, and S. Liu, “Numerical investigation of the transmission enhancement through subwavelength hole array,” Opt. Commun. 274(1), 236–240 (2007). [CrossRef]
  12. S.-H. Chang, S. K. Gray, and G. C. Schatz, “Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films,” Opt. Express 13(8), 3150–3165 (2005). [CrossRef] [PubMed]
  13. A. P. Hibbins, B. R. Evans, and J. R. Sambles, “Experimental verification of designer surface plasmons,” Science 308(5722), 670–672 (2005). [CrossRef] [PubMed]
  14. M. Qiu, “Photonic band structures for surface waves on structured metal surfaces,” Opt. Express 13(19), 7583–7588 (2005). [CrossRef] [PubMed]
  15. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26(24), 1972–1974 (2001). [CrossRef]
  16. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003). [CrossRef] [PubMed]
  17. A. P. Hibbins, W. A. Murray, J. Tyler, S. Wedge, W. L. Barnes, and J. R. Sambles, “Resonant absorption of electromagnetic fields by surface plasmons buried in a multilayered plasmonic structure,” Phys. Rev. Lett. 74, 073408 (2006).
  18. E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008). [CrossRef] [PubMed]
  19. L. Wang, J.-X. Cao, L. Liu, Y. Lv, S.-J. Zheng, Y. Lv, and Shi-Jian Zheng, “Surface plasmon enhanced transmission and directivity through subwavelength slit in X-band microwaves,” Appl. Phys. Lett. 92(24), 241113 (2008). [CrossRef]
  20. K. G. Lee and Q. H. Park, “Coupling of surface plasmon polaritons and light in metallic nanoslits,” Phys. Rev. Lett. 95(10), 103902 (2005). [CrossRef] [PubMed]
  21. H. Lochbihler, “Surface polaritons on gole-wire gratings,” Phys. Rev. B 50(7), 4795–4801 (1994). [CrossRef]
  22. H. Lochbihler, R. Depine, Hans Lochbihler, and Ricardo Depine, “Highly conducting wire gratings in the resonance region,” Appl. Opt. 32(19), 3459 (1993). [CrossRef] [PubMed]
  23. J. H. Kang, J.W. Lee, M. A. Seo, D. S. Kim, and Q-Han Park, “Perfect Transmission of THz Waves in Structured Metals,” J. Kor. Phys. Soc. 49, 881–884 (2006).
  24. J. W. Lee, M. A. Seo, D. S. Kim, and Ch. Lienau, “J. H. Kang and Q-Han Park, “Fabry-Perot effects in THz timedomain spectroscopy of plasmonic band-gap structures,” Appl. Phys. Lett. 88, 071114 (2006). [CrossRef]
  25. D. J. Park, S. B. Choi, K. J. Ahn, J. H. Kang, Q-Han Park, M. S. Jeong, D. K. Ko, and D. S. Kim, “Experimental verification of surface plasmon amplification on a metallic transmission grating,” Phys. Rev. B 77(11), 115451 (2008). [CrossRef]
  26. S. Sena Akarca-Biyikli, Irfan Bulu, and Ekmel Ozbay, “Resonant excitation of surface plasmons in onedimensional metallic grating structures at microwave frequencies,” J. Opt. A 7, S159–S164 (2005). [CrossRef]
  27. M. M. Sigalas, C. T. Chan, K. M. Ho, and C. M. Soukoulis, “Metallic photonic band-gap materials,” Phys. Rev. B 52(16), 11744–11751 (1995). [CrossRef]
  28. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, (Artech House, Boston, 1995).
  29. H. Raether, Springer Tracts in Modern Physics, vol. 111: “Surface Plasmons on Smooth and Rough Surfaces and on Gratings,” (Springer-Verlag Berlin Heidelberg, 1988).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited