OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 15 — Jul. 20, 2009
  • pp: 12418–12423

Electrically switchable phase-type fractal zone plates and fractal photon sieves

Yan Jun Liu, Hai Tao Dai, Xiao Wei Sun, and Tony Jun Huang  »View Author Affiliations

Optics Express, Vol. 17, Issue 15, pp. 12418-12423 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (302 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Electrically switchable phase-type fractal zone plates and fractal photon sieves were fabricated using polymer-dispersed liquid crystal material based on a photomask. While both exhibited similar first-order diffraction behavior, the fractal photon sieves showed greatly suppressed diffraction at higher orders. Compared with current amplitude-type photomasks, our switchable, phase-type devices demonstrated higher diffraction efficiency, an important factor in the future development of adaptive optics.

© 2009 OSA

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(050.5080) Diffraction and gratings : Phase shift
(160.2100) Materials : Electro-optical materials
(230.3720) Optical devices : Liquid-crystal devices

ToC Category:
Diffraction and Gratings

Original Manuscript: April 10, 2009
Revised Manuscript: June 16, 2009
Manuscript Accepted: June 24, 2009
Published: July 20, 2009

Yan Jun Liu, Hai Tao Dai, Xiao Wei Sun, and Tony Jun Huang, "Electrically switchable phase-type fractal zone plates and fractal photon sieves," Opt. Express 17, 12418-12423 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Bokor and N. Davidson, “Ideal collimation, concentration, and imaging with curved diffractive optical elements,” Rev. Sci. Instrum. 76(11), 111101 (2005). [CrossRef]
  2. F. M. Dickey, “Laser beam shaping,” Opt. Photonics News 14, 30–35 (2003). [CrossRef]
  3. M. A. Forastiere and G. C. Righini, “A new approach to the design of hybrid lenses for integrated optics,” Opt. Rev. 6(2), 124–130 (1999). [CrossRef]
  4. Y. X. Wang, W. B. Yun, and C. Jacobsen, “Achromatic Fresnel optics for wideband extreme-ultraviolet and X-ray imaging,” Nature 424(6944), 50–53 (2003). [CrossRef] [PubMed]
  5. G. Saavedra, W. D. Furlan, and J. A. Monsoriu, “Fractal zone plates,” Opt. Lett. 28(12), 971–973 (2003). [CrossRef] [PubMed]
  6. W. D. Furlan, G. Saavedra, and J. A. Monsoriu, “White-light imaging with fractal zone plates,” Opt. Lett. 32(15), 2109–2111 (2007). [CrossRef] [PubMed]
  7. J. A. Monsoriu, G. Saavedra, and W. D. Furlan, “Fractal zone plates with variable lacunarity,” Opt. Express 12(18), 4227–4234 (2004). [CrossRef] [PubMed]
  8. J. A. Davis, L. Ramirez, J. A. R. Martín-Romo, T. Alieva, and M. L. Calvo, “Focusing properties of fractal zone plates: experimental implementation with a liquid-crystal display,” Opt. Lett. 29(12), 1321–1323 (2004). [CrossRef] [PubMed]
  9. H. T. Dai, J. H. Liu, X. C. Sun, and D. J. Yin, “Programmable fractal zone plates (FraZPs) with foci finely tuned,” Opt. Commun. 281(22), 5515–5519 (2008). [CrossRef]
  10. L. Kipp, M. Skibowski, R. L. Johnson, R. Berndt, R. Adelung, S. Harm, and R. Seemann, “Sharper images by focusing soft X-rays with photon sieves,” Nature 414(6860), 184–188 (2001). [CrossRef] [PubMed]
  11. Q. Cao and J. Jahns, “Focusing analysis of the pinhole photon sieve: individual far-field model,” J. Opt. Soc. Am. A 19(12), 2387–2393 (2002). [CrossRef]
  12. Q. Cao and J. Jahns, “Nonparaxial model for the focusing of high-numerical-aperture photon sieves,” J. Opt. Soc. Am. A 20(6), 1005–1012 (2003). [CrossRef]
  13. G. Andersen, “Large optical photon sieve,” Opt. Lett. 30(22), 2976–2978 (2005). [CrossRef] [PubMed]
  14. R. Menon, D. Gil, G. Barbastathis, and H. Smith, “Photon-sieve lithography,” J. Opt. Soc. Am. A 22(2), 342–345 (2005). [CrossRef]
  15. G. Andersen and D. Tullson, “Broadband antihole photon sieve telescope,” Appl. Opt. 46(18), 3706–3708 (2007). [CrossRef] [PubMed]
  16. J. Jia, J. Jiang, C. Xie, and M. Liu, “Photon sieve for reduction of the far-field diffraction spot size in the laser free-space communication system,” Opt. Commun. 281(17), 4536–4539 (2008). [CrossRef]
  17. F. Giménez, J. A. Monsoriu, W. D. Furlan, and A. Pons, “Fractal photon sieve,” Opt. Express 14(25), 11958–11963 (2006). [CrossRef] [PubMed]
  18. F. Gimenez, W. D. Furlan, and J. A. Monsoriu, “Lacunar fractal photon sieves,” Opt. Commun. 277(1), 1–4 (2007). [CrossRef]
  19. Y. J. Liu, X. W. Sun, P. Shum, and X. J. Yin, “Tunable fly’s-eye lens made of patterned polymer-dispersed liquid crystal,” Opt. Express 14(12), 5634–5640 (2006). [CrossRef] [PubMed]
  20. Y. J. Liu, X. W. Sun, H. I. Elim, and W. Ji, “Gain narrowing and random lasing from dye-doped polymer-dispersed liquid crystals with nanoscale liquid crystal droplets,” Appl. Phys. Lett. 89(1), 011111 (2006). [CrossRef]
  21. Y. J. Liu and X. W. Sun, “Electrically switchable computer-generated hologram recorded in polymer-dispersed liquid crystal,” Appl. Phys. Lett. 90(19), 191118 (2007). [CrossRef]
  22. Y. J. Liu, X. W. Sun, Q. Wang, and D. Luo, “Electrically switchable optical vortex generated by a computer-generated hologram recorded in polymer-dispersed liquid crystals,” Opt. Express 15(25), 16645–16650 (2007). [CrossRef] [PubMed]
  23. L. Zunino and M. Garavaglia, “Fraunhofer diffraction by Cantor fractals with variable lacunarity,” J. Mod. Opt. 50(5), 717–727 (2003). [CrossRef]
  24. D. Wu, L.-G. Niu, Q.-D. Chen, R. Wang, and H.-B. Sun, “High efficiency multilevel phase-type fractal zone plates,” Opt. Lett. 33(24), 2913–2915 (2008). [CrossRef] [PubMed]
  25. H. Ren, Y.-H. Fan, and S.-T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515–1517 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

Supplementary Material

» Media 1: AVI (4055 KB)     
» Media 2: AVI (3928 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited