OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 15 — Jul. 20, 2009
  • pp: 12470–12480

Out-of-plane scattering from vertically asymmetric photonic crystal slab waveguides with in-plane disorder

Juraj Topolancik, Frank Vollmer, Rob Ilic, and Michael Crescimanno  »View Author Affiliations


Optics Express, Vol. 17, Issue 15, pp. 12470-12480 (2009)
http://dx.doi.org/10.1364/OE.17.012470


View Full Text Article

Acrobat PDF (658 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We characterize optical wave propagation along line defects in two-dimensional arrays of air-holes in free-standing silicon slabs. The fabricated waveguides contain random variations in orientation of the photonic lattice elements which perturb the in-plane translational symmetry. The vertical slab symmetry is also broken by a tilt of the etched sidewalls. We discuss how these lattice imperfections affect out-of-plane scattering losses and introduce a mechanism for high-Q cavity excitation related to polarization mixing.

© 2009 OSA

OCIS Codes
(230.5750) Optical devices : Resonators
(260.5740) Physical optics : Resonance
(130.5296) Integrated optics : Photonic crystal waveguides
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: March 20, 2009
Revised Manuscript: June 17, 2009
Manuscript Accepted: June 30, 2009
Published: July 8, 2009

Citation
Juraj Topolancik, Frank Vollmer, Rob Ilic, and Michael Crescimanno, "Out-of-plane scattering from vertically asymmetric photonic crystal slab waveguides with in-plane disorder," Opt. Express 17, 12470-12480 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-15-12470


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystal−Molding the Flow of Light (Princeton University Press, 2008).
  2. K. Inoue, and K. Ohtaka, eds., Photonic Crystals−Physics, Fabrication and Applications (Springer, 2003).
  3. M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, H. Taniyama, S. Mitsugi, and M. Morita, “Nonlinear and adiabatic control of high-Q photonic crystal nanocavities,” Opt. Express 15(26), 17458–17481 (2007). [CrossRef]
  4. T. Uesugi, B. S. Song, T. Asano, and S. Noda, “Investigation of optical nonlinearities in an ultra-high-Q Si nanocavity in a two-dimensional photonic crystal slab,” Opt. Express 14(1), 377–386 (2006). [CrossRef]
  5. M. Soljacić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3(4), 211–219 (2004). [CrossRef]
  6. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004). [CrossRef]
  7. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vucković, “Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,” Phys. Rev. Lett. 95(1), 013904 (2005). [CrossRef]
  8. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999). [CrossRef]
  9. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007). [CrossRef]
  10. S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000). [CrossRef]
  11. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005). [CrossRef]
  12. M. Belotti, J. F. Galisteo Lòpez, S. De Angelis, M. Galli, I. Maksymov, L. C. Andreani, D. Peyrade, and Y. Chen, “All-optical switching in 2D silicon photonic crystals with low loss waveguides and optical cavities,” Opt. Express 16(15), 11624–11636 (2008).
  13. D. O’Brien, A. Gomez-Iglesias, M.-D. Settle, A. Micheli, M. Salib, and T. F. Krauss, “Tunable optical delay using photonic crystal heterostructure nanocavities,” Phys. Rev. B 76, 1–4 (2007).
  14. M. R. Lee and P. M. Fauchet, “Two-dimensional silicon photonic crystal based biosensing platform for protein detection,” Opt. Express 15(8), 4530–4535 (2007). [CrossRef]
  15. D. Gerace and L. C. Andreani, “Disorder-induced losses in photonic crystal waveguides with line defects,” Opt. Lett. 29(16), 1897–1899 (2004). [CrossRef]
  16. S. G. Johnson, M. L. Povinelli, M. Soljačić, A. Karalis, S. Jacobs, and J. D. Joannopoulos, “Roughness losses and volume-current methods in photonic-crystal waveguides,” Appl. Phys. B 81(2-3), 283–293 (2005). [CrossRef]
  17. S. Hughes, L. Ramunno, J. F. Young, and J. E. Sipe, “Extrinsic optical scattering loss in photonic crystal waveguides: role of fabrication disorder and photon group velocity,” Phys. Rev. Lett. 94(3), 033903 (2005). [CrossRef]
  18. N. Le Thomas, V. Zabelin, R. Houdré, M. V. Kotlyer, and T. F. Krauss, “Influence of residual disorder on the anti-crossing of Bloch modes probed in k-space,” Phys. Rev. B 78(12), 125301 (2008). [CrossRef]
  19. R. Ferrini, D. Leuenberger, R. Houdré, H. Benisty, M. Kamp, and A. Forchel, “Disorder-induced losses in planar photonic crystals,” Opt. Lett. 31(10), 1426–1428 (2006). [CrossRef]
  20. S. Mookherjea, J. S. Park, S.-H. Yang, and P. R. Bandaru, “Localization in silicon nanophotonic slow-light waveguides,” Nat. Photonics 2(2), 90–93 (2008). [CrossRef]
  21. Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, “Anderson localization and nonlinearity in one-dimensional disordered photonic lattices,” Phys. Rev. Lett. 100(1), 013906 (2008). [CrossRef]
  22. J. Topolancik, B. Ilic, and F. Vollmer, “Experimental observation of strong photon localization in disordered photonic crystal waveguides,” Phys. Rev. Lett. 99(25), 253901 (2007). [CrossRef]
  23. N. Le Thomas, V. Zabelin, R. Houdré, M. V. Kotlyar, and T. F. Krauss, “Influence of residual disorder on the anticrossing of Bloch modes probed in k space,” Phys. Rev. B 78(12), 125301 (2008). [CrossRef]
  24. Y. Tanaka, T. Asano, Y. Akahane, B. S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett. 82(11), 1661–1663 (2003). [CrossRef]
  25. J. Canning, N. Skivesen, M. Kristensen, L. H. Frandsen, A. Lavrinenko, C. Martelli, and A. Tetu, “Mapping the broadband polarization properties of linear 2D SOI photonic crystal waveguides,” Opt. Express 15(23), 15603–15614 (2007). [CrossRef]
  26. E. Dulkeith, S. J. McNab, and Y. A. Vlasov, “Mapping the optical properties of slab-type two-dimensional photonic crystal waveguides,” Phys. Rev. B 72(11), 115102 (2005). [CrossRef]
  27. J. Topolancik, F. Vollmer, and B. Ilic, “Random high-Q cavities in disordered photonic crystal waveguides,” Appl. Phys. Lett. 91(20), 201102 (2007). [CrossRef]
  28. A. Taflove, and S. C. Hagness, Computational Electrodynamics−The Finite-Difference Time Domain Method (Artech House, 2005).
  29. E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs,” Phys. Rev. B 72(16), 161318 (2005). [CrossRef]
  30. A. Parini, P. Hamel, A. De Rossi, S. Combrié, N.-V.-Q. Tran, Y. Gottesman, R. Gabet, A. Tanleau, Y. Jaouën, and G. Vadalà, “Time-wavelength reflectance maps of photonic crystal wavegudes: A new view on disorder-induces scattering,” J. Lightwave Technol. 26(23), 3794–3802 (2008). [CrossRef]
  31. L. O’Faolain, T. P. White, D. O’Brien, X. Yuan, M. D. Settle, and T. F. Krauss, “Dependence of extrinsic loss on group velocity in photonic crystal waveguides,” Opt. Express 15(20), 13129–13138 (2007). [CrossRef]
  32. K. Srinivasan and O. Painter, “Momentum space design of high-Q photonic crystal optical cavities,” Opt. Express 10(15), 670–684 (2002).
  33. M. Settle, M. Salib, A. Michaeli, and T. F. Krauss, “Low loss silicon on insulator photonic crystal waveguides made by 193nm optical lithography,” Opt. Express 14(6), 2440–2445 (2006). [CrossRef]
  34. A. Yariv, Optical Electronics. (Saunders College Publishing, 1991).
  35. T. Asano, B. S. Song, and S. Noda, “Analysis of the experimental Q factors (~ 1 million) of photonic crystal nanocavities,” Opt. Express 14(5), 1996–2002 (2006). [CrossRef]
  36. A. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006). [CrossRef]
  37. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filters,” IEEE J. Quantum Electron. 35(9), 1322–1331 (1999). [CrossRef]
  38. E. Waks and J. Vuckovic, “Coupled mode theory for photonic crystal cavity-waveguide interaction,” Opt. Express 13(13), 5064–5073 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited