OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 15 — Jul. 20, 2009
  • pp: 12493–12501

Terahertz near-field enhancement in narrow rectangular apertures on metal film

D. J. Park, S. B. Choi, Y. H. Ahn, F. Rotermund, I. B. Sohn, C. Kang, M. S. Jeong, and D. S. Kim  »View Author Affiliations

Optics Express, Vol. 17, Issue 15, pp. 12493-12501 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (810 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report huge field accumulations in rectangular aperture arrays on thin metal film by using shape resonance in THz frequency region. A huge far-field transmission enhancement is observed in samples of various widths ranging from 10 µm to 1.8 µm which correspond to only an order of λ/100. Theoretical calculations based on vector diffraction theory indicates 230 times near-field enhancement in case of the 1.8 µm wide rectangular aperture. Transmission measurement through the single rectangular aperture shows that the shape resonance, not the periodicity, is mainly responsible for the transmission enhancement and the corresponding field enhancement.

© 2009 Optical Society of America

OCIS Codes
(180.0180) Microscopy : Microscopy
(260.3090) Physical optics : Infrared, far
(320.7160) Ultrafast optics : Ultrafast technology

ToC Category:
Diffraction and Gratings

Original Manuscript: April 28, 2009
Revised Manuscript: June 9, 2009
Manuscript Accepted: June 11, 2009
Published: July 8, 2009

D. J. Park, S. B. Choi, Y. H. Ahn, F. Rotermund, I. B. Sohn, Chul Kang, M. S. Jeong, and D. S. Kim, "Terahertz near-field enhancement in narrow rectangular apertures on metal film," Opt. Express 17, 12493-12501 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. C. Hohng, D. S. Kim, Y. C. Yoon, V. Malyarchuk, C. Lienau, J. W. Park, K. H. Yoo, J. Kim, S. H. Han, and Q. H. Park, "Evolution of the near-field patterns into the far-field in surface plasmonic band gap nano-structures," J. Korean Phys. Soc. 46,S205-S209 (2005).
  2. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelenght hole arrays," Nature 391, 667-669 (1998). [CrossRef]
  3. P. Alitalo, S. Maslovski, and S. Tretyakov, "Near-field enhancement and imaging in double cylindrical polariton-resonant structures: Enlarging superlens," Phys. Lett. A 357, 397-400 (2006). [CrossRef]
  4. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, "Surface Plasmon Polaritons and Their Role in the Enhanced Transmission of Light Through Periodic Arrays of Subwavelength Holes in a Metal Film," Phys. Rev. Lett. 92, 107401 (2004). [CrossRef] [PubMed]
  5. F. J. Garcia-Vidal, E. Moreno, J. A. Porto, and L. Martin-Moreno, "Transmission of Light through a Single Rectangular Hole," Phys. Rev. Lett. 95, 103901-103904 (2005). [CrossRef] [PubMed]
  6. S. C. Hohng, Y. C. Yoon, D. S. Kim, V. Malyarchuk, R. Muller, C. Lienau, J. W. Park, K. H. Yoo, J. Kim, H. Y. Ryu, and Q. H. Park, "Light emission from the shadows: Surface plasmon nano-optics at near and far fields," Appl. Phys. Lett. 81, 3239 (2002). [CrossRef]
  7. D. S. Kim, S. C. Hohng, V. Malyarchuk, Y. C. Yoon, Y. H. Ahn, K. J. Yee, J. W. Park, J. Kim, Q. H. Park, and C. Lienau, "Microscopic origin of surface-plasmon radiation in plasmonic band-gap nanostructures," Phys. Rev. Lett. 91, 143901 (2003). [CrossRef] [PubMed]
  8. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002). [CrossRef] [PubMed]
  9. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, "Theory of extraordinary optical transmission through subwavelength hole arrays," Phys. Rev. Lett. 86, 1114-1117 (2001). [CrossRef] [PubMed]
  10. Z. Ruan, and M. Qiu, "Enhanced Transmission through Periodic Arrays of Subwavelength Holes: The Role of Localized Waveguide Resonances," Phys. Rev. Lett. 96, 233901-233904 (2006). [CrossRef] [PubMed]
  11. A. Agrawal, T. Matsui, Z. V. Vardeny, and A. Nahata, "Terahertz transmission properties of quasiperiodic and aperiodic aperture arrays," J. Opt. Soc. Am. B 24, 2545-2555 (2007). [CrossRef]
  12. A. Agrawal, T. Matsui, Z. V. Vardeny, and A. Nahata, "Extraordinary optical transmission through metallic films perforated with aperture arrays having short-range order," Opt. Express 16, 6267-6273 (2008). [CrossRef] [PubMed]
  13. A. Bitzer, and M. Walther, "Terahertz near-field imaging of metallic subwavelength holes and hole arrays," Appl. Phys. Lett. 92, 231101-231103 (2008). [CrossRef]
  14. B. Gelmont, R. Parthasarathy, and T. Globus, "Edge effects in propagation of terahertz radiation in subwavelength periodic structures," Semiconductors 42, 924-930 (2008). [CrossRef]
  15. A. Mary, S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, "Theory of light transmission through an array of rectangular holes," Phys. Rev. B 76, 195414-195415 (2007). [CrossRef]
  16. C.-L. Pan, C.-F. Hsieh, R.-P. Pan, M. Tanaka, F. Miyamaru, M. Tani, and M. Hangyo, "Control of enhanced THz transmission through metallic hole arrays using nematic liquid crystal," Opt. Express 13, 3921-3930 (2005). [CrossRef] [PubMed]
  17. H. Cao, A. Agrawal, and A. Nahata, "Controlling the transmission resonance lineshape of a single subwavelength aperture," Opt. Express 13, 763-769 (2005). [CrossRef] [PubMed]
  18. F. J. Garcia-Vidal, L. Martin-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, "Transmission of light through a single rectangular hole in a real metal," Phys. Rev. B 74, 153411-153414 (2006). [CrossRef]
  19. D. J. Park, S. B. Choi, Y. H. Ahn, Q. H. Park, and D. S. Kim, "Theoretical Study of terahertz Near-Field Enhancement Assisted by Shape Resonance in Rectangular Hole Arrays in Metal Films," J. Korean Phys. Soc. 54, 7 (2009).
  20. K. G. Lee, and Q. H. Park, "Coupling of Surface Plasmon Polaritons and Light in Metallic Nanoslits," Phys. Rev. Lett. 95, 103902-103904 (2005). [CrossRef] [PubMed]
  21. T. H. Isaac, J. G. Rivas, J. R. Sambles, W. L. Barnes, and E. Hendry, "Surface plasmon mediated transmission of subwavelength slits at THz frequencies," Phys. Rev. B 77, 4 (2008). [CrossRef]
  22. M. A. Seo, A. J. L. Adam, J. H. Kang, J. W. Lee, S. C. Jeoung, Q. H. Park, P. C. M. Planken, and D. S. Kim, "Fourier-transform terahertz near-field imaging of one-dimensional slit arrays: mapping of electric-field-, magnetic-field-, and Poynting vectors," Opt. Express 15, 11781-11789 (2007). [CrossRef] [PubMed]
  23. E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, "Optical Control over Surface-Plasmon-Polariton-Assisted THz Transmission through a Slit Aperture," Phys. Rev. Lett. 100, 123901-123904 (2008). [CrossRef] [PubMed]
  24. J. W. Lee, M. A. Seo, D. J. Park, S. C. Jeoung, Q. H. Park, C. Lienau, and D. S. Kim, "Terahertz transparency at Fabry-Perot resonances of periodic slit arrays in a metal plate: experiment and theory," Opt. Express 14, 12637-12643 (2006). [CrossRef] [PubMed]
  25. R. Parthasarathy, A. Bykhovski, B. Gelmont, T. Globus, N. Swami, and D. Woolard, "Enhanced Coupling of Subterahertz Radiation with Semiconductor Periodic Slot Arrays," Phys. Rev. Lett. 98, 153906 (2007). [CrossRef] [PubMed]
  26. Y. Todorov, I. Sagnes, I. Abram, and C. Minot, "Purcell Enhancement of Spontaneous Emission from Quantum Cascades inside Mirror-Grating Metal Cavities at THz Frequencies," Phys. Rev. Lett. 99, 223603-223604 (2007). [CrossRef]
  27. Q. Cao, and P. Lalanne, "Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits," Phys. Rev. Lett. 88, 574031-574034 (2002). [CrossRef]
  28. N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005). [CrossRef] [PubMed]
  29. F. J. García-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martín-Moreno, "Multiple Paths to Enhance Optical Transmission through a Single Subwavelength Slit," Phys. Rev. Lett. 90, 213901 (2003). [CrossRef] [PubMed]
  30. I. R. Hooper and J. R. Sambles, "Dispersion of surface plasmon polaritons on short-pitch metal gratings," Phys. Rev. B 65, 1654321-1654329 (2002). [CrossRef]
  31. J. W. Lee, M. A. Seo, D. H. Kang, K. S. Khim, S. C. Jeoung, and D. S. Kim, "Terahertz Electromagnetic Wave Transmission through Random Arrays of Single Rectangular Holes and Slits in Thin Metallic Sheets," Phys. Rev. Lett. 99, 137401-137404 (2007). [CrossRef] [PubMed]
  32. J. E. Kihm, Y. C. Yoon, D. J. Park, Y. H. Ahn, C. Ropers, C. Lienau, J. Kim, Q. H. Park, and D. S. Kim, "Fabry-Perot tuning of the band-gap polarity in plasmonic crystals," Phys. Rev. B 75, 035414-035415 (2007). [CrossRef]
  33. S. B. Choi, D. J. Park, D. S. Kim, M. S. Jeong, and C. C. Byeon, "Spatio-spectral measurement of a surface plasmon polariton in a gold nano-slit array," J. Korean Phys. Soc. 53, 713-716 (2008). [CrossRef]
  34. D. J. Park, K. G. Lee, H. W. Kihm, Y. M. Byun, D. S. Kim, C. Ropers, C. Lienau, J. H. Kang, and Q. H. Park, "Near-to-far-field spectral evolution in a plasmonic crystal: Experimental verification of the equipartition of diffraction orders," Appl. Phys. Lett. 93, 073109 (2008). [CrossRef]
  35. Y. B. Ji, E. S. Lee, J. S. Jang, and T. I. Jeon, "Enhancement of the detection of THz Sommerfeld wave using a conical wire waveguide," Opt. Express 16, 271-278 (2008). [CrossRef] [PubMed]
  36. K. Wang and D. M. Mittleman, "Dispersion of Surface Plasmon Polaritons on Metal Wires in the Terahertz Frequency Range," Phys. Rev. Lett. 96, 157401-157404 (2006). [CrossRef] [PubMed]
  37. W. Zhu, A. Agrawal, H. Cao, and A. Nahata, "Generation of broadband radially polarized terahertz radiation directly on a cylindrical metal wire," Opt. Express 16, 8433-8439 (2008). [CrossRef] [PubMed]
  38. J. Hao and G. W. Hanson, "Infrared and optical properties of carbon nanotube dipole antennas," IEEE Trans. Nanotechnol. 5, 766-775 (2006). [CrossRef]
  39. T. Klar, M. Perner, S. Grosse, G. Von Plessen, W. Spirkl, and J. Feldmann, "Surface-plasmon resonances in single metallic nanoparticles," Phys. Rev. Lett. 80, 4249-4252 (1998). [CrossRef]
  40. R. Singh, E. Smirnova, A. J. Taylor, J. F. O'Hara, and W. Zhang, "Optically thin terahertz metamaterials," Opt. Express 16, 6537-6543 (2008). [CrossRef] [PubMed]
  41. Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Superlens," Nano Lett. 7, 403-408 (2007). [CrossRef] [PubMed]
  42. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  43. J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sens. Actuators B 54, 3-15 (1999). [CrossRef]
  44. H. A. Bethe, "Theory of Diffraction by Small Holes," Phys. Rev. 66, 163 (1944). [CrossRef]
  45. D. J. Park, S. B. Choi, K. J. Ahn, D. S. Kim, J. H. Kang, Q. H. Park, M. S. Jeong, and D. K. Ko, "Experimental verification of surface plasmon amplification on a metallic transmission grating," Phys. Rev. B 77, 115451-115454 (2008).
  46. J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. G. de Abajo, B. K. Kelley, and T. Mallouk, "Optical properties of coupled metallic nanorods for field-enhanced spectroscopy," Phys. Rev. B 71, 235420 (2005). [CrossRef]
  47. L. Novotny, "Effective Wavelength Scaling for Optical Antennas," Phys. Rev. Lett. 98, 266802-266804 (2007). [CrossRef] [PubMed]
  48. G. W. Bryant, F. J. Garcia de Abajo, and J. Aizpurua, "Mapping the Plasmon Resonances of Metallic Nanoantennas," Nano Lett. 8, 631-636 (2008). [CrossRef] [PubMed]
  49. A. Drezet, J. C. Woehl, and S. Huant, "Diffraction of light by a planar aperture in a metallic screen," J. Math. Phys.  47,072901.1-072901.10 (2006). [CrossRef]
  50. M. A. Seo, H. R. Park, S. M. Koo, D. J. Park, J. H. Kang, O. K. Suwal, S. S. Choi, P. C. M. Planken, G. S. Park, Q. H. Park, and D. S. Kim, "Terahertz field enhancement by a metallic nano slit operating beyond the skin-depth limit," Nat. Photonics 3, 152-156 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited