OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 15 — Jul. 20, 2009
  • pp: 12706–12713

Enhancement of random lasing based on the composite consisting of nanospheres embedded in nanorods template

Y. L. Chen, C. L. Chen, H. Y. Lin, C. W. Chen, Y. F. Chen, Y. Hung, and C. Y. Mou  »View Author Affiliations

Optics Express, Vol. 17, Issue 15, pp. 12706-12713 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (318 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A simple and general approach has been developed for the enhancement of random lasing based on the composite consisting of nanospheres and nanorods array. Due to the inherent nature of high refractive index, the selected nanorods act efficiently as scattering feedback centers, which can promote the formation of closed loop paths of the emission arising from nanospheres. To illustrate our working principle, the composite consisting of Tb(OH)3/SiO2 nanospheres and ZnO nanorods was chosen as an example. Quite interestingly, it is found that the random lasing behavior can be easily achieved for the composite system, while it is absent in pure Tb(OH)3/SiO2 nanospheres. The strategy demonstrated here should be very useful for the future development of coherent light emission sources and many other optoelectronic devices.

© 2009 Optical Society of America

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(190.5890) Nonlinear optics : Scattering, stimulated
(260.5740) Physical optics : Resonance

ToC Category:
Lasers and Laser Optics

Original Manuscript: May 27, 2009
Revised Manuscript: June 24, 2009
Manuscript Accepted: June 25, 2009
Published: July 10, 2009

Y. L. Chen, C. L. Chen, H. Y. Lin, C. W. Chen, Y. F. Chen, Y. Hung, and C. Y. Mou, "Enhancement of random lasing based on the composite consisting of nanospheres embedded in nanorods template," Opt. Express 17, 12706-12713 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. X. F. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, "Single-nanowire electrically driven lasers," Nature London 421, 241-245 (2003). [CrossRef]
  2. S. S. Wong, E. Joselevich, A. T. Woolley, C. L. Cheung, and C. M. Lieber, "Covalently functionalized nanotubes as nanometer-sized probes in chemistry and biology," Nature London 394, 52-55 (1998). [CrossRef]
  3. X. F. Duan, Y. Huang, Y. Cui, J. F. Wang, and C. M. Lieber,"Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices," Nature London 409, 66-69 (2001). [CrossRef]
  4. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, "Random laser action in semiconductor powder," Phys. Rev. Lett. 82, 2278-2281 (1999). [CrossRef]
  5. M. A. Zimmler, J. Bao, F. Capasso, S. Muller, and C. Ronning, "Laser action in nanowires: Observation of the transition from amplified spontaneous emission to laser oscillation," Appl. Phys. Lett. 93, 051101-051101-3 (2008). [CrossRef]
  6. H. C. Hsu, C.Y. Wu, and W.F. Hsieh, "Stimulated emission and lasing of random-growth oriented ZnO nanowires," J. Appl. Phys. 97, 064315-064319 (2005). [CrossRef]
  7. H. Q. Yan, J. Johnson, M. Law, R. R. He, K. Knutsen, J. R. McKinney, J. Pham, R. Saykally, and P. D. Yang, "ZnO nanoribbon microcavity lasers," Adv. Mater. ‖Weinheim, Ger.| 15, 1907-1911 ‖2003|. [CrossRef]
  8. M. D. McGehee, M. A. Diaz-Garcia, F. Hide, R. Gupta, E. K. Miller, D. Moses, and A. J. Heeger, "Semiconducting polymer distributed feedback lasers," Appl. Phys. Lett. 72, 1536-1538 (1998). [CrossRef]
  9. G. Bendelli, K. Komori, S. Aria, "Gain saturation and propagation characteristics of index-guidedtapered-waveguide traveling-wave semiconductor laser amplifiers (TTW-SLAs)," IEEE J. Quantum Electron. 28, 447-457 (1992). [CrossRef]
  10. U. Scherf, S. Riechel, U. Lemmer, and R. F. Mahrt, "Conjugated polymers: lasing and stimulated emission," Curr. Opin. Solid State Mater. Sci. 5, 143-154 (2001) [CrossRef]
  11. Letokhov, V.S.  "Generation of light by a scattering medium with negative resonance absorption," Sov. Phys. JETP 26, 835-840 (1968).
  12. S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G.-C. Yi, "Random laser action in ZnO nanorod arrays embedded in ZnO epilayers," Appl. Phys. Lett. 84, 3241-3243 (2004). [CrossRef]
  13. C. X. Liu, J. Y. Liu, J. H. Zhang, and K. Dou, "Random lasing with scatterers of diameters 20 nm in an active medium," Opt. Commun. 244, 299-303 (2005). [CrossRef]
  14. M. Balachandran, D. P. Pacheco, and N. M. Lawandy, "Laser action in polymeric gain media containing scattering particles," Appl. Opt. 35, 640-743 (1996). [CrossRef] [PubMed]
  15. . N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, "Laser action in strongly scattering media," Nature (London) 368, 436-438 (1994). [CrossRef]
  16. D. Zhang, Y. Wang, and D. Ma, "Random lasing emission from a red fluorescent dye doped polystyrene film containing dispersed polystyrene nanoparticles," Appl. Phys. Lett. 91, 091115-091115-3 (2007). [CrossRef]
  17. H. Y. Lin, H. K. Fu, C. L. Chen, Y. F. Chen, Y. S. Lin, Y. Hung, and C. Y. Mou,"Laser action in Tb(OH)3/SiO2 photonic crystals" Opt. Express,  16, 16697-16703 (2008). [CrossRef] [PubMed]
  18. H. Y. Lin, C. L. Chen, Y. Y. Chou, L. L. Huang, and Y. F. Chen," Enhancement of band gap emission stimulated by defect loss," Opt. Express,  14, 2372-2379 (2006). [CrossRef] [PubMed]
  19. J. J. Wu and S.C. Liu," Low-Temperature Growth of Well-Aligned ZnO Nanorods by Chemical Vapor Deposition" Adv. Mater. 14, 215-218 (2002). [CrossRef]
  20. Y. S. Lin, Y. Hung, H. Y. Lin, Y. H. Tseng, Y. F. Chen, and C. Y. Mou, "Photonic crystals from monodisperse lanthanide-hydroxide-at-silica core/shell colloidal spheres" Adv. Mater. 19, 577-580, (2007). [CrossRef]
  21. R. Reisfeld and C. K. Jørgensen, Lasers and excited states of Rare Earths (Springer, Berlin, 1977). [CrossRef]
  22. V. G. Kozlov, V. Bulovic, P. E. Burrows, M. Baldo, V. B. Khalfin, G. Parthasarathy, and S. R. Forrest, "Study of lasing action based on Forster energy transfer in optically pumped organic semiconductor thin films," J. Appl. Phys. 84, 4096-4108 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited