OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 15 — Jul. 20, 2009
  • pp: 12731–12740

Robust adiabatic sum frequency conversion

Haim Suchowski, Vaibhav Prabhudesai, Dan Oron, Ady Arie, and Yaron Silberberg  »View Author Affiliations

Optics Express, Vol. 17, Issue 15, pp. 12731-12740 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (471 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We discuss theoretically and demonstrate experimentally the robustness of the adiabatic sum frequency conversion method. This technique, borrowed from an analogous scheme of robust population transfer in atomic physics and nuclear magnetic resonance, enables the achievement of nearly full frequency conversion in a sum frequency generation process for a bandwidth up to two orders of magnitude wider than in conventional conversion schemes. We show that this scheme is robust to variations in the parameters of both the nonlinear crystal and of the incoming light. These include the crystal temperature, the frequency of the incoming field, the pump intensity, the crystal length and the angle of incidence. Also, we show that this extremely broad bandwidth can be tuned to higher or lower central wavelengths by changing either the pump frequency or the crystal temperature. The detailed study of the properties of this converter is done using the Landau-Zener theory dealing with the adiabatic transitions in two level systems.

© 2009 Optical Society of America

OCIS Codes
(190.4360) Nonlinear optics : Nonlinear optics, devices
(230.4320) Optical devices : Nonlinear optical devices
(140.3613) Lasers and laser optics : Lasers, upconversion

Original Manuscript: March 11, 2009
Revised Manuscript: May 14, 2009
Manuscript Accepted: May 26, 2009
Published: July 13, 2009

Haim Suchowski, Vaibhav Prabhudesai, Dan Oron, Ady Arie, and Yaron Silberberg, "Robust adiabatic sum frequency conversion," Opt. Express 17, 12731-12740 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. F. Bloch, "Nuclear Induction", Phys. Rev. 70, 460-474 (1946). [CrossRef]
  2. R. P. Feynman, F. L. Vernon, and R.W. Hellwarth, "Geometrical Representation of the Schrodinger Equation for Solving Maser Problems", J. Appl. Phys. 28, 49-52 (1957). [CrossRef]
  3. H. Suchowski, D. Oron, A. Arie, and Y. Silberberg, "Geometrical Representation of Sum Frequency Generation and Adiabatic Frequency Conversion", Phys. Rev. A,  78, 063821 (2008). [CrossRef]
  4. D. Boyd, Nonlinear Optics, 2nd ed. (Academic, New York, 2003).
  5. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, 1989).
  6. L. Allen and J. H. Eberly, Optical Resonance and Two Level Atoms (Dover, New York, 1987).
  7. T. Torosov and N. V. Vitanov, "Exactly soluble two-state quantum models with linear couplings", J. Phys. A,  41, 155309 (2008). [CrossRef]
  8. G. Imeshev, M. Fejer, A. Galvanauskas, and D. Harter, "Pulse shaping by difference-frequency mixing with quasi-phase-matching gratings", J. Opt. Soc. Am. B 18, 534-539 (2001). [CrossRef]
  9. M. Arbore, A. Galvanauskas, D. Harter, M. Chou, and M. Fejer, "Engineerable compression of ultrashort pulses by use of second-harmonic generation in chirped-period-poled lithium niobate" Opt. Lett. 22, 1341-1343 (1997). [CrossRef]
  10. G. Imeshev, M. Arbore, M. Fejer, A. Galvanauskas, M. Fermann, and D. Harter, "Ultrashort-pulse secondharmonic generation with longitudinally nonuniform quasi-phase-matching gratings: pulse compression and shaping", J. Opt. Soc. Am. B,  17, 304-318 (2000). [CrossRef]
  11. D. S. Hum, and M. Fejer, "Quasi-phasematching", C. R. Physique 8, 180-198 (2007). [CrossRef]
  12. M. Charbonneau-Lefort, B. Afeyan, and M. Fejer, "Optical parametric amplifiers using chirped quasiphasematching gratings. I. Practical design formulas", J. Opt. Soc. Am. B 25, 463-480 (2008). [CrossRef]
  13. M. Baudrier-Raybaut, R. Haidar, Ph. Kupecek, Ph. Lemasson, and E. Rosencher, "Random quasi phase matching in bulk polycrystalline isotropic nonlinear materials", Nature 432, 374-376 (2004). [CrossRef] [PubMed]
  14. K. Mizuuchi, K. Yamamoto, M. Kato, and H. Sato, "Broadening of the Phase-Matching Bandwidth in Quasi-Phased-Matched Second Harmonic Generation", IEEE J. Quantum Electron 30, 15961604 (1994). [CrossRef]
  15. L. D. Landau, "Zur Theorie der Energieubertragung. II", Physics of the Soviet Union 2, 46-51 (1932).
  16. C. Zener, "Non-adiabatic Crossing of Energy Levels", Proc. Roy. Soc. London A 137, 696-702 (1932). [CrossRef]
  17. A. Massiach, Quantum Mechanics (N. Holland, Amsterdam, 1962), Vol II.
  18. D. J. Tannor, Introduction to Quantum Mechanics: A Time-dependent Perspective (University Science Books, Sausalito, California, 2007).
  19. J. Armstrong, N. Bloembergen, J. Ducuing, and P. Pershan, "Interactions between Light Waves in a Nonlinear Dielectric", Phys. Rev. 127, 1918-1939 (1962). [CrossRef]
  20. G. Rosenman, A. Skliar and D. Eger, M. Oron, and M. Katz, "Low temperature periodic electrical poling of flux-grown KTiOPO4 and isomorphic crystals", Appl. Phys. Lett.,  73, 3650-3652 (1998). [CrossRef]
  21. S. Emanueli, and A. Arie, "Temperature-Dependent Dispersion Equations for KTiOPO4 and KTiOAsO4", Appl. Opt. 42, 6661-6665 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (2687 KB)     
» Media 2: MOV (1717 KB)     
» Media 3: MOV (2369 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited