OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 15 — Jul. 20, 2009
  • pp: 12807–12812

Gain-assisted time delay of plasmons in coupled metal ring resonator waveguides

Yun Shen and Guo Ping Wang  »View Author Affiliations

Optics Express, Vol. 17, Issue 15, pp. 12807-12812 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (289 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Coupled metal ring resonator waveguides filled with optical active materials are proposed to achieve the slow light and tunable time delay. The tunable group index and time delay are realized by the dispersion of the active materials and its interplay with that of the geometric structure of the waveguides. Our results from the transfer matrix analysis and finite-difference time-domain numerical simulation show that the anomalous dispersion of the active materials can help to amplify the group index determined by the waveguide geometry. Based upon this structure, a variable-bit-rate optical time-division-multiplexing system is numerically demonstrated.

© 2009 Optical Society of America

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(240.6680) Optics at surfaces : Surface plasmons
(230.4555) Optical devices : Coupled resonators

ToC Category:
Optics at Surfaces

Original Manuscript: April 21, 2009
Revised Manuscript: June 15, 2009
Manuscript Accepted: June 25, 2009
Published: July 13, 2009

Yun Shen and Guo Ping Wang, "Gain-assisted time delay of plasmons in coupled metal ring resonator waveguides," Opt. Express 17, 12807-12812 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, "Coupled-resonator optical waveguide: a proposal and analysis," Opt. Lett. 24, 711-713 (1999). [CrossRef]
  2. J. K. S. Poon, J. Scheuer, S. Mookherjea, G. T. Paloczi, Y. Huang, and A. Yariv, "Matrix analysis of microring coupled-resonator optical waveguides," Opt. Express 12, 90-103 (2004). [CrossRef] [PubMed]
  3. J. K. S. Poon, L. Zhu, G. A. DeRose, and A. Yariv, "Transmission and group delay of microring coupled-resonator optical waveguides," Opt. Lett. 31, 456-458 (2006). [CrossRef] [PubMed]
  4. J. K. S. Poon, J. Scheuer, Y. Xu, and A. Yariv, "Designing coupled-resonator optical waveguide delay lines," J. Opt. Soc. Am. B 21, 1665-1673 (2004). [CrossRef]
  5. G. T. Paloczi, Y. Huang, and A. Yariv, "Polymeric Mach-Zehnder interferometer using serially coupled microring resonators," Opt. Express 11, 2666-2671 (2003). [CrossRef] [PubMed]
  6. S. Mookherjea, "Using gain to tune the dispersion relation of coupled-resonator optical waveguides," IEEE Photon. Technol. Lett. 18, 715-717 (2006). [CrossRef]
  7. B. Wang and G. P. Wang, "Plasmonic waveguide ring resonator at terahertz frequencies," Appl. Phys. Lett. 89, 133106 (2006). [CrossRef]
  8. W. L. Barnes, A. Dereux, and T. W. Ebbesen, "Surface plasmon subwavelength optics," Nature 424, 824-830 (2003). [CrossRef] [PubMed]
  9. E. Ozbay, "Plasmonics: merging photonics and electronics at nanoscale dimensions," Science 311, 189-193 (2006). [CrossRef] [PubMed]
  10. B. Zhang, L. Zhang, L. S. Yan, I. Fazal1, J. Y. Yang1, and A. E. Willner, "Continuously-tunable, bit-rate variable OTDM using broadband SBS slow-light delay line," Opt. Express 15, 8317-8322 (2007). [CrossRef] [PubMed]
  11. A. E. Willner, B. Zhang, L. Zhang, L. Yan, and I. Fazal, "Optical signal processing using tunable delay elements based on slow light," IEEE J. Quantum Electron. 14, 691-705 (2008). [CrossRef]
  12. I. Fazal, O. Yilmaz, S. Nuccio, B. Zhang, A. E. Willner, C. Langrock, and M. M. Fejer, "Optical data packet synchronization and multiplexing using a tunable optical delay based on wavelength conversion and inter-channel chromatic dispersion," Opt. Express 15, 10492-10497 (2007). [CrossRef] [PubMed]
  13. G. Gantzounis, and N. Stefanou, "Tight-binding description of single-mode cavity-plasmon waveguides in the frequency and time domain, " J. Phys.: Condens. Matter 20, 015202 (2008). [CrossRef]
  14. A. A. Govyadinov, and V. A. Podolskiy, "Gain-assisted to superluminal group velocity manipulation in nanowaveguides," Phys. Rev. Lett. 97, 223902 (2006). [CrossRef] [PubMed]
  15. A. A. Govyadinov, and V. A. Podolskiy, "Active metamaterials: Sign of refractive index and gain-assisted dispersion management," Appl. Phys. Lett. 91, 191103 (2007). [CrossRef]
  16. I. P. Kaminow, W. L. Mammel, and H. P. Weber, "Metal-Clad optical waveguides: analytical and experimental study," Appl. Opt. 13, 396-405 (1974). [CrossRef] [PubMed]
  17. Y. Shen and G. P. Wang, "Optical bistability in metal gap waveguide nanocavities," Opt. Express 16, 8421-8426 (2008). [CrossRef] [PubMed]
  18. I. C. Goyal, R. L. Gallawa, and A. K. Ghatak, "Bent planar waveguides and whispering gallery modes: a new method of analysis," J. Lightwave Technol. 8, 768-774 (1990). [CrossRef]
  19. P. Yeh, A. Yariv, and C. S. Hong, "Electromagnetic propagation in periodic stratified media. I. General theory," J. Opt. Soc. Am. 67, 423-438 (1977). [CrossRef]
  20. S. Schneider, P. Borri, W. Langbein, U. Woggon, R. L. Sellin, D. Ouang, and D. Bimberg, "Excited-state gain dynamics in InGaAs quantum-dot amplifiers," IEEE Photon. Technol. Lett. 17, 2014-2016 (2005). [CrossRef]
  21. V. I. Klimov, A.A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, M. G. Bawendi, "Optical gain and stimulated emission in nanocrystal quantum dots," Science 290, 314-317 (2000). [CrossRef] [PubMed]
  22. G. M. Ribeiro, R. L. Maltez, A. A. Bernussi, D. Ugarte, and W. de Carvalho, Jr., "Seeding of InP islands on InAs quantum dot templates," J. Appl. Phys. 89, 6548-6550 (2001). [CrossRef]
  23. E. D. Palik, Handbook of Optical Constants of Solids (Academic, London, 1985).
  24. Y. H. Ye, J. Ding, D. Y. Jeong, I. C. Khoo, and Q. M. Zhang, "Finite-size effect on one-dimensional coupled-resonator optical waveguides," Phys. Rev. E 69, 056604 (2004). [CrossRef]
  25. G. Gantzounis, and N. Stefanou, "Cavity-plasmon waveguides: Multiple scattering calculations of dispersion in weakly coupled dielectric nanocavities in a metallic host material," Phys. Rev. B 74,085102 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited