OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 15 — Jul. 20, 2009
  • pp: 12813–12820

Fluctuating nanomechanical system in a high finesse optical microcavity

Ivan Favero, Sebastian Stapfner, David Hunger, Philipp Paulitschke, Jakob Reichel, Heribert Lorenz, Eva M. Weig, and Khaled Karrai  »View Author Affiliations

Optics Express, Vol. 17, Issue 15, pp. 12813-12820 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (242 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The idea of extending cavity quantum electrodynamics experiments to sub-wavelength sized nanomechanical systems has been recently proposed in the context of optical cavity cooling and optomechanics of deformable cavities. Here we present an experiment involving a single nanorod consisting of about 109 atoms precisely positioned into the confined mode of a miniature high finesse Fabry-Pérot microcavity. We show that the optical transmission of the cavity is affected not only by the static position of the nanorod but also by its vibrational fluctuation. The Brownian motion of the nanorod is resolved with a displacement sensitivity of 200 fm/√Hz at room temperature. Besides a broad range of sensing applications, cavity-induced manipulation of optomechanical nanosystems and back-action is anticipated.

© 2009 OSA

OCIS Codes
(020.5580) Atomic and molecular physics : Quantum electrodynamics
(060.2310) Fiber optics and optical communications : Fiber optics
(350.3950) Other areas of optics : Micro-optics
(140.3948) Lasers and laser optics : Microcavity devices
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(280.4788) Remote sensing and sensors : Optical sensing and sensors

ToC Category:
Atomic and Molecular Physics

Original Manuscript: April 27, 2009
Manuscript Accepted: June 30, 2009
Published: July 13, 2009

Ivan Favero, Sebastian Stapfner, David Hunger, Philipp Paulitschke, Jakob Reichel, Heribert Lorenz, Eva M. Weig, and Khaled Karrai, "Fluctuating nanomechanical system in a high finesse optical microcavity," Opt. Express 17, 12813-12820 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. H. Mabuchi, Q. A. Turchette, M. S. Chapman, and H. J. Kimble, “Real-time detection of individual atoms falling through a high-finesse optical cavity,” Opt. Lett. 21(17), 1393 (1996). [CrossRef] [PubMed]
  2. S. Haroche, and J. M. Raymond, Exploring the Quantum (Oxford University Press, Oxford, 2006).
  3. H. J. Kimble, “Strong interactions of Single Atoms and Photons in Cavity QED,” Phys. Scr. T76(1), 127–137 (1998). [CrossRef]
  4. I. Favero and K. Karrai, “Cavity cooling of a nanomechanical resonator by light scattering,” N. J. Phys. 10(9), 095006 (2008). [CrossRef]
  5. V. Vuletic and S. Chu, “Laser cooling of atoms, ions, or molecules by coherent scattering,” Phys. Rev. Lett. 84(17), 3787–3790 (2000). [CrossRef] [PubMed]
  6. P. Maunz, T. Puppe, I. Schuster, N. Syassen, P. W. H. Pinkse, and G. Rempe, “Cavity cooling of a single atom,” Nature 428(6978), 50–52 (2004). [CrossRef] [PubMed]
  7. I. Favero and K. Karrai, “Optomechanics of deformable optical cavities,” Nat. Photonics 3(4), 201–205 (2009). [CrossRef]
  8. V. B. Braginsky, and A. B. Manukin, Measurement of weak forces in physics experiments (Chicago University Press, Chicago, 1977).
  9. C. H. Metzger and K. Karrai, “Cavity cooling of a microlever,” Nature 432(7020), 1002–1005 (2004). [CrossRef] [PubMed]
  10. O. Arcizet, P. F. Cohadon, T. Briant, M. Pinard, and A. Heidmann, “Radiation-pressure cooling and optomechanical instability of a micromirror,” Nature 444(7115), 71–74 (2006). [CrossRef] [PubMed]
  11. S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444(7115), 67–70 (2006). [CrossRef] [PubMed]
  12. A. Schliesser, P. Del’Haye, N. Nooshi, K. J. Vahala, and T. J. Kippenberg, “Radiation pressure cooling of a micromechanical oscillator using dynamical backaction,” Phys. Rev. Lett. 97(24), 243905 (2006). [CrossRef]
  13. T. Corbitt, Y. Chen, E. Innerhofer, H. Müller-Ebhardt, D. Ottaway, H. Rehbein, D. Sigg, S. Whitcomb, C. Wipf, and N. Mavalvala, “An all-optical trap for a gram-scale mirror,” Phys. Rev. Lett. 98(15), 150802 (2007). [CrossRef] [PubMed]
  14. D. Kleckner and D. Bouwmeester, “Sub-kelvin optical cooling of a micromechanical resonator,” Nature 444(7115), 75–78 (2006). [CrossRef] [PubMed]
  15. J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452(7183), 72–75 (2008). [CrossRef] [PubMed]
  16. O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, O. Français, and L. Rousseau, “High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor,” Phys. Rev. Lett. 97(13), 133601 (2006). [CrossRef] [PubMed]
  17. M. D. LaHaye, O. Buu, B. Camarota, and K. C. Schwab, “Approaching the quantum limit of a nanomechanical resonator,” Science 304(5667), 74–77 (2004). [CrossRef] [PubMed]
  18. F. Marquardt, J. G. E. Harris, and S. M. Girvin, “Dynamical multistability induced by radiation pressure in high-finesse micromechanical optical cavities,” Phys. Rev. Lett. 96(10), 103901 (2006). [CrossRef] [PubMed]
  19. D. Rugar, H. J. Mamin, and P. Guethner, “Improved fiber-optic interferometer for atomic force microscopy,” Appl. Phys. Lett. 55(25), 2588 (1989). [CrossRef]
  20. C. A. Regal, J. D. Teufel, and K. W. Lehnert, “Measuring nanomechanical motion with a microwave cavity interferometer,” Nat. Phys. 4(7), 555–560 (2008). [CrossRef]
  21. L. Sekaric, M. Zalalutdinov, S. W. Turner, A. T. Zehnder, J. M. Parpia, and H. G. Craighead, “Nanomechanical resonant structures as tunable passive modulators of light,” Appl. Phys. Lett. 80(19), 3617 (2002). [CrossRef]
  22. M. Li, W. H. P. Pernice, C. Xiong, T. Baehr-Jones, M. Hochberg, and H. X. Tang, “Harnessing optical forces in integrated photonic circuits,” Nature 456(7221), 480–484 (2008). [CrossRef] [PubMed]
  23. M. Wendel, H. Lorenz, and J. P. Kotthaus, “Sharpened electron beam deposited tips for high resolution atomic force microscope lithography and imaging,” Appl. Phys. Lett. 67(25), 3732 (1995) (Nanotools, Munich, Germany. www.nanotools.com). [CrossRef]
  24. M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, “Exceptionally high Young's modulus observed for individual carbon nanotubes,” Nature 381(6584), 678–680 (1996). [CrossRef]
  25. L. D. Landau, and E. M. Lifschitz, Mechanics (Pergamon, New York, 1976).
  26. Y. Colombe, T. Steinmetz, G. Dubois, F. Linke, D. Hunger, and J. Reichel, “Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip,” Nature 450(7167), 272–276 (2007). [CrossRef] [PubMed]
  27. N. O. Azak, M. Y. Shagam, D. M. Karabacak, K. L. Ekinci, D. H. Kim, and D. Y. Jang, “Nanomechanical displacement detection using fiber-optic interferometry,” Appl. Phys. Lett. 91(9), 093112 (2007). [CrossRef]
  28. see a similar discussion in the case of a Fabry-Pérot interferometer measuring the displacement of one of its two mirrors in V. B. Braginsky, and F. Khalili, Quantum Measurement p 137 (Cambridge University Press, Cambridge, 1995).
  29. Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett. 6(4), 583–586 (2006). [CrossRef] [PubMed]
  30. H. G. Craighead, “Nanoelectromechanical systems,” Science 290(5496), 1532–1535 (2000). [CrossRef] [PubMed]
  31. I. Favero, C. Metzger, S. Camerer, D. König, H. Lorenz, J. P. Kotthaus, and K. Karrai, “Optical cooling of a micromirror of wavelength size,” Appl. Phys. Lett. 90(10), 104101 (2007). [CrossRef]
  32. I. De Vlaminck, J. Roels, D. Taillaert, D. Van Thourhout, R. Baets, L. Lagae, and G. Borghs, “Detection of nanomechanical motion by evanescent light wave coupling,” Appl. Phys. Lett. 90(23), 233116 (2007). [CrossRef]
  33. A. Ayari, P. Vincent, S. Perisanu, M. Choueib, V. Gouttenoire, M. Bechelany, D. Cornu, and S. T. Purcell, “Self-oscillations in field emission nanowire mechanical resonators: a nanometric dc-ac conversion,” Nano Lett. 7(8), 2252–2257 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited