OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 15 — Jul. 20, 2009
  • pp: 12835–12848

Active microring optical integrator associated with electroabsorption modulators for high speed low light power loadable and erasable optical memory unit

Yunhong Ding, Xiaobei Zhang, Xinliang Zhang, and Dexiu Huang  »View Author Affiliations


Optics Express, Vol. 17, Issue 15, pp. 12835-12848 (2009)
http://dx.doi.org/10.1364/OE.17.012835


View Full Text Article

Enhanced HTML    Acrobat PDF (303 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and analyze a novel loadable and erasable optical memory unit based on an active microring optical integrator associated with electroabsorption modulators (EAM) on III-V material system. The gain of the active microring is characterized by the two energy band model with amplified spontaneous emission noises taken into account. Based on the light field propagation equation in the active microring waveguide and the transfer function of the EAM-MZI switch, the step function performances of the optical memory under the gain matching condition are discussed for different injection light powers. After that, the memory operation of the novel optical memory unit is analyzed in detail. Simulations show that, the step function response and memory performances are affected by the carrier consumption. However, such influence will be released, and the memory operates well for the low light power injection case. The novel optical memory unit is promising to be cascaded connected and densely integrated for high speed low power optical data stream storage and buffer.

© 2009 OSA

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(200.4490) Optics in computing : Optical buffers
(200.4560) Optics in computing : Optical data processing
(210.4680) Optical data storage : Optical memories
(230.5590) Optical devices : Quantum-well, -wire and -dot devices

ToC Category:
Optics in Computing

History
Original Manuscript: May 6, 2009
Revised Manuscript: June 18, 2009
Manuscript Accepted: June 18, 2009
Published: July 13, 2009

Citation
Yunhong Ding, Xiaobei Zhang, Xinliang Zhang, and Dexiu Huang, "Active microring optical integrator associated with electroabsorption modulators for high speed low light power loadable and erasable optical memory unit," Opt. Express 17, 12835-12848 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-15-12835


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. E. Heebner and R. W. Boyd, “'Slow' and 'fast' light in resonator-coupled waveguides,” J. Mod. Opt. 49(14-15), 2629–2636 (2002). [CrossRef]
  2. J. B. Khurgin, “Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: comparative analysis,” J. Opt. Soc. Am. B 22(5), 1062–1074 (2005). [CrossRef]
  3. Y. A. Vlasov, M. O’Boyle, H. F. Hamann, and S. J. McNab, “Active control of slow light on a chip with photonic crystal waveguides,” Nature 438(7064), 65–69 (2005). [CrossRef] [PubMed]
  4. Q. F. Xu, P. Dong, and M. Lipson, “Breaking the delay-bandwidth limit in a photonic structure,” Nat. Phys. 3(6), 406–410 (2007). [CrossRef]
  5. A. M. Liu, C. Q. Wu, M. S. Lim, Y. D. Gong, and P. Shum, “Optical buffer configuration based on a 3×3 collinear fibre coupler,” Electron. Lett. 40(16), 1017 (2004). [CrossRef]
  6. Z. R. Wang, N. Chi, and S. Y. Yu, “Time-slot assignment using optical buffer with a large variable delay range based on AVC crosspoint switch,” IEEE J. Lightwave Technol. 24(8), 2994–3001 (2006). [CrossRef]
  7. S. N. Fu, P. Shum, G. Ning, C. Q. Wu, and Y. J. Li, “Theoretical investigation of dual-wavelength packet signal storage with SOA-based dual loop optical buffer,” Opt. Commun. 279(2), 255–261 (2007). [CrossRef]
  8. S. Zimmermann, A. Wixforth, J. P. Kotthaus, W. Wegscheider, and M. Bichler, “A Semiconductor-Based Photonic Memory Cell,” Science 283(5406), 1292–1295 (1999). [CrossRef] [PubMed]
  9. Z. R. Wang, G. H. Yuan, G. Verschaffelt, J. Danckaert, and S. Y. Yu, “Storing 2 bits of information in a novel single semiconductor microring laser memory cell,” IEEE Photon. Technol. Lett. 20(14), 1228–1230 (2008). [CrossRef]
  10. M. T. D. Hill, H. J. Dorren, T. De Vries, X. J. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004). [CrossRef] [PubMed]
  11. N. Q. Ngo and L. N. Binh, “Programmable incoherent Newton-Cotes optical integrator,” Opt. Commun. 119(3-4), 390–402 (1995). [CrossRef]
  12. N. Q. Ngo, “Optical integrator for optical dark-soliton detection and pulse shaping,” Appl. Opt. 45(26), 6785–6791 (2006). [CrossRef] [PubMed]
  13. N. Quoc Ngo, “Design of an optical temporal integrator based on a phase-shifted fiber Bragg grating in transmission,” Opt. Lett. 32(20), 3020–3022 (2007). [CrossRef] [PubMed]
  14. J. Azaña, “Proposal of a uniform fiber Bragg grating as an ultrafast all-optical integrator,” Opt. Lett. 33(1), 4–6 (2008). [CrossRef]
  15. M. A. Preciado and M. A. Muriel, “Ultrafast all-optical integrator based on a fiber Bragg grating: proposal and design,” Opt. Lett. 33(12), 1348–1350 (2008). [CrossRef] [PubMed]
  16. Y. P. R. Slavík, N. Ayotte, S. Doucet, T.-J. Ahn, S. LaRochelle, and J. Azaña, “Photonic Temporal Integrator,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), CPDB3 http://www.opticsinfobase.org/abstract.cfm?URI=URI=CLEO-2008-CPDB2003 .
  17. N. Q. Ngo and L. N. Binh, “Optical realization of Newton-Cotes-based integrators for dark soliton generation,” IEEE J. Lightwave Technol. 24(1), 563–572 (2006). [CrossRef]
  18. Y. H. Ding, X. B. Zhang, X. L. Zhang, and D. X. Huang, “Proposal for loadable and erasable optical memory unit based on dual active microring optical integrators,” Opt. Commun. 281(21), 5315–5321 (2008). [CrossRef]
  19. R. S. Tucker and J. L. Riding, “Optical ring-resonator random-access memories,” IEEE J. Lightwave Technol. 26(3), 320–328 (2008). [CrossRef]
  20. K. Yonggyoo, L. Hanlim, L. Jaehoon, H. Jaeho, T. W. Oh, and J. Jichai, “Chirp characteristics of 10-Gb/s electroabsorption modulator integrated DFB lasers,” IEEE J. Quantum Electron. 36(8), 900–908 (2000). [CrossRef]
  21. M. Sorel, G. Giuliani, A. Scire, R. Miglierina, S. Donati, and P. J. R. Laybourn, “Operating regimes of GaAs-AlGaAs semiconductor ring lasers: experiment and model,” IEEE J. Quantum Electron. 39(10), 1187–1195 (2003). [CrossRef]
  22. S. Park, S. S. Kim, L. W. Wang, and S. T. Ho, “InGaAsP-InP nanoscale waveguide-coupled microring lasers with submilliampere threshold current using Cl-2-N-2-based high-density plasma etching,” IEEE J. Quantum Electron. 41(3), 351–356 (2005). [CrossRef]
  23. L. P. Hou, H. L. Zhu, F. Zhou, L. F. Wang, J. Bian, and W. Wang, “Lossless electroabsorption modulator monolithically rntegrated with a semiconductor optical amplifier and dual-wavegulde spot-size converters,” IEEE Photon. Technol. Lett. 17(8), 1635–1637 (2005). [CrossRef]
  24. H. Kawanishi, Y. Yamauchi, N. Mineo, Y. Shibuya, H. Murai, K. Yamada, and H. Wada, “EAM-integrated DFB laser modules with more than 40-GHz bandwidth,” IEEE Photon. Technol. Lett. 13(9), 954–956 (2001). [CrossRef]
  25. W. D. Sacher and J. K. S. Poon, “Dynamics of microring resonator modulators,” Opt. Express 16(20), 15741–15753 (2008). [CrossRef] [PubMed]
  26. M. J. Connelly, “Wideband semiconductor optical amplifier steady-state numerical model,” IEEE J. Quantum Electron. 37(3), 439–447 (2001). [CrossRef]
  27. J. Park and Y. Kawakami, “Time-domain models for the performance simulation of semiconductor optical amplifiers,” Opt. Express 14(7), 2956–2968 (2006). [CrossRef] [PubMed]
  28. E. B. Zhou, X. L. Zhang, and D. X. Huang, “Analysis on dynamic characteristics of semiconductor optical amplifiers with certain facet reflection based on detailed wideband model,” Opt. Express 15(14), 9096–9106 (2007). [CrossRef] [PubMed]
  29. I. Stamataki, S. Mikroulis, A. Kapsalis, and D. Syvridis, “Investigation on the multimode dynamics of InGaAsP-InP microring lasers,” IEEE J. Quantum Electron. 42(12), 1266–1273 (2006). [CrossRef]
  30. G. H. Yuan and S. Y. Yu, “Analysis of dynamic switching Behavior of bistable semiconductor ring lasers triggered by resonant optical pulse injection,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1227–1234 (2007). [CrossRef]
  31. Y. Boucher and A. Sharaiha, “Spectral properties of amplified spontaneous emission in semiconductor optical amplifiers,” IEEE J. Quantum Electron. 36(6), 708–720 (2000). [CrossRef]
  32. F. N. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007). [CrossRef]
  33. Y. H. Ding, X. B. Zhang, X. L. Zhang, and D. X. Huang, “Raman based silicon photonic integrator,” to be presented at the 8th Pacific Rim Conference on Lasers and Electro-Optics (CLEO®/Pacific Rim 2009), Shanghai, China, 30 August - 3 September, 2009.
  34. J. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, “Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators,” Nat. Photonics 2(7), 433–437 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited