OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 15 — Jul. 20, 2009
  • pp: 12849–12868

Anisotropic linear and nonlinear optical properties from anisotropy-controlled metallic nanocomposites

Jorge Alejandro Reyes-Esqueda, Vladimir Rodríguez-Iglesias, Héctor-Gabriel Silva-Pereyra, Carlos Torres-Torres, Ana-Laura Santiago-Ramírez, Juan Carlos Cheang-Wong, Alejandro Crespo-Sosa, Luis Rodríguez-Fernández, Alejandra López-Suárez, and Alicia Oliver  »View Author Affiliations


Optics Express, Vol. 17, Issue 15, pp. 12849-12868 (2009)
http://dx.doi.org/10.1364/OE.17.012849


View Full Text Article

Enhanced HTML    Acrobat PDF (1362 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

High-energy metallic ions were implanted in silica matrices, obtaining spherical-like metallic nanoparticles (NPs) after a proper thermal treatment. These NPs were then deformed by irradiation with Si ions, obtaining an anisotropic metallic nanocomposite. An average large birefringence of 0.06 was measured for these materials in the 300-800 nm region. Besides, their third order nonlinear optical response was measured using self-diffraction and P-scan techniques at 532 nm with 26 ps pulses. By adjusting the incident light’s polarization and the angular position of the nanocomposite, the measurements could be directly related to, at least, two of the three linear independent components of its third order susceptibility tensor, finding a large, but anisotropic, response of around 10−7 esu with respect to other isotropic metallic systems. For the nonlinear optical absorption, we were able to shift from saturable to reverse saturable absorption depending on probing the Au NP’s major or minor axes, respectively. This fact could be related to local field calculations and NP’s electronic properties. For the nonlinear optical refraction, we passed from self-focusing to self-defocusing, when changing from Ag to Au.

© 2009 OSA

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(160.4330) Materials : Nonlinear optical materials
(190.0190) Nonlinear optics : Nonlinear optics
(190.4720) Nonlinear optics : Optical nonlinearities of condensed matter
(190.7070) Nonlinear optics : Two-wave mixing
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(160.4236) Materials : Nanomaterials

ToC Category:
Nonlinear Optics

History
Original Manuscript: May 14, 2009
Revised Manuscript: June 20, 2009
Manuscript Accepted: June 21, 2009
Published: July 13, 2009

Citation
Jorge Alejandro Reyes-Esqueda, Vladimir Rodríguez-Iglesias, Héctor-Gabriel Silva-Pereyra, Carlos Torres-Torres, Ana-Laura Santiago-Ramírez, Juan Carlos Cheang-Wong, Alejandro Crespo-Sosa, Luis Rodríguez-Fernández, Alejandra López-Suárez, and Alicia Oliver, "Anisotropic linear and nonlinear optical properties from anisotropy-controlled metallic nanocomposites," Opt. Express 17, 12849-12868 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-15-12849


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Noguez, “Surface plasmons on metal nanoparticles: the influence of shape and physical environment,” J. Phys. Chem. C 111(10), 3806–3819 (2007). [CrossRef]
  2. A. L. González, C. Noguez, G. P. Ortíz, and G. Rodríguez-Gattorno, “Optical absorbance of colloidal suspensions of silver polyhedral nanoparticles,” J. Phys. Chem. B 109(37), 17512–17517 (2005). [CrossRef]
  3. A. Tao, P. Sinsermsuksakul, and P. Yang, “Polyhedral silver nanoparticles with distinct scattering signatures,” Angew. Chem. Int. Ed. 45(28), 4597–4601 (2006). [CrossRef]
  4. J. Zhang, H. Liu, Z. Wang, and N. Ming, “Synthesis of gold regular octahedra with controlled size and plasmon resonance,” Appl. Phys. Lett. 90(16), 163122 (2007). [CrossRef]
  5. M. Maillard, S. Giorgio, and M.-P. Pileni, “Tuning the size of silver nanodisks with similar aspect ratios: synthesis and optical properties,” J. Phys. Chem. B 107(11), 2466–2470 (2003). [CrossRef]
  6. A. Oliver, J. A. Reyes-Esqueda, J. C. Cheang-Wong, C. E. Román-Velázquez, A. Crespo-Sosa, L. Rodríguez-Fernández, J. A. Seman, and C. Noguez, “Controlled anisotropic deformation of Ag nanoparticles by Si ion irradiation,” Phys. Rev. B 74(24), 245425 (2006). [CrossRef]
  7. M. Grzelczak, J. Pérez-Juste, F. J. García de Abajo, and L. M. Liz-Marzán, “Optical properties of platinum-coated gold nanorods,” J. Phys. Chem. C 111(17), 6183–6188 (2007). [CrossRef]
  8. R. Bukasov and J. S. Shumaker-Parry, “Highly tunable infrared extinction properties of gold nanocrescents,” Nano Lett. 7(5), 1113–1118 (2007). [CrossRef] [PubMed]
  9. A. L. Gonzalez, J. A. Reyes-Esqueda, and C. Noguez, “Optical properties of elongated noble metal nanoparticles,” J. Phys. Chem. C 112(19), 7356–7362 (2008). [CrossRef]
  10. J. A. Reyes-Esqueda, A. B. Salvador, and R. Zanella, “Size control of Au nanoparticles on TiO2 and Al2O3 by DP Urea: optical absorption and electron microscopy as control probes,” J. Nanosci. Nanotechnol. 8(8), 3843–3850 (2008). [CrossRef] [PubMed]
  11. V. Rodríguez-Iglesias, H. G. Silva-Pereyra, J. C. Cheang-Wong, J. A. Reyes-Esqueda, L. Rodríguez-Fernández, A. Crespo-Sosa, G. Kellerman, and A. Oliver, “MeV Si ion irradiation effects on the optical absorption properties of metallic nanoparticles embedded in silica,” Nucl. Instrum. Methods B 266(12-13), 3138–3142 (2008). [CrossRef]
  12. X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007). [CrossRef] [PubMed]
  13. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005). [CrossRef] [PubMed]
  14. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007). [CrossRef] [PubMed]
  15. A. Alù and N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2(5), 307–310 (2008). [CrossRef]
  16. T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008). [CrossRef]
  17. X. Meng, K. Fujita, Y. Zong, S. Murai, and K. Tanaka, “Random lasers with coherent feedback from highly transparent polymer films embedded with silver nanoparticles,” Appl. Phys. Lett. 92(20), 201112 (2008). [CrossRef]
  18. N. Zheludev, S. Prosvirnin, N. Papasimakis, and V. Fedotov, “Lasing spaser,” Nat. Photonics 2(6), 351–354 (2008). [CrossRef]
  19. P. J. Reece, “Plasmonics: Finer optical tweezers,” Nat. Photonics 2(6), 333–334 (2008). [CrossRef]
  20. J. A. Reyes-Esqueda, C. Torres-Torres, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, C. Noguez, and A. Oliver, “Large optical birefringence by anisotropic silver nanocomposites,” Opt. Express 16(2), 710–717 (2008). [CrossRef] [PubMed]
  21. T. He, Z. Cai, P. Li, Y. Cheng, and Y. Mo “Third-order nonlinear response of Ag/methyl orange composite thin films,” J. Mod. Opt. 55(6), 975–983 (2008). [CrossRef]
  22. Y. H. Wang, C. Z. Jiang, X. H. Xiao, and Y. G. Cheng, “Third-order nonlinear optical response of Cu/Ag nanoclusters by ion implantation under 1064 nm laser excitation,” Physica B 403(12), 2143–2147 (2008). [CrossRef]
  23. K. Tsuchiya, S. Nagayasu, S. Okamoto, T. Hayakawa, T. Hihara, K. Yamamoto, I. Takumi, S. Hara, H. Hasegawa, S. Akasaka, and N. Kosikawa, “Nonlinear optical properties of gold nanoparticles selectively introduced into the periodic microdomains of block copolymers,” Opt. Express 16(8), 5362–5371 (2008). [CrossRef] [PubMed]
  24. R. W. Boyd, “Nonlinear Optics,” Academic Press, San Diego, (1992).
  25. Y. Li, S. Zhang, J. Liu, and K. Zhang, “Quantum correlation between fundamental and second-harmonic fields via second-harmonic generation,” J. Opt. Soc. Am. B 24(3), 660–663 (2007). [CrossRef]
  26. M. D. Eisaman, A. André, F. Massou, M. Fleischhauer, A. S. Zibrov, and M. D. Lukin, “Electromagnetically induced transparency with tunable single-photon pulses,” Nature 438(7069), 837–841 (2005). [CrossRef] [PubMed]
  27. J. P. Dowling, “Quantum information: to compute or not to compute?” Nature 439(7079), 919–920 (2006). [CrossRef] [PubMed]
  28. J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darquié, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature 440(7085), 779–782 (2006). [CrossRef] [PubMed]
  29. C. Diederichs, J. Tignon, G. Dasbach, C. Ciuti, A. Lemaître, J. Bloch, Ph. Roussignol, and C. Delalande, “Parametric oscillation in vertical triple microcavities,” Nature 440(7086), 904–907 (2006). [CrossRef] [PubMed]
  30. N. B. Grosse, W. P. Bowen, K. McKenzie, and P. K. Lam, “Harmonic entanglement with second-order nonlinearity,” Phys. Rev. Lett. 96(6), 063601 (2006). [CrossRef] [PubMed]
  31. R. L. de Visser and M. Blaauboer, “Deterministic teleportation of electrons in a quantum dot nanostructure,” Phys. Rev. Lett. 96(24), 246801 (2006). [CrossRef] [PubMed]
  32. L. J. Klein, H. F. Hamann, Y.-Y. Au, and S. Ingvarsson, “Coherence properties of infrared thermal emission from heated metallic nanowires,” Appl. Phys. Lett. 92(21), 213102 (2008). [CrossRef]
  33. F. Hache, D. Ricard, C. Flytzanis, and U. Kreibig, “The optical Kerr effect in small metal particles and metal colloids: the case of gold,” Appl. Phys., A Mater. Sci. Process. 47(4), 347–357 (1988). [CrossRef]
  34. J.-M. Lamarre, F. Billard, and L. Martinu, “Local field calculations of the anisotropic nonlinear absorption coefficient of aligned gold nanorods embedded in silica,” J. Opt. Soc. Am. B 25(6), 961–971 (2008). [CrossRef]
  35. Y. Guillet, M. Rashidi-Huyeh, and B. Palpant, “Influence of laser pulse characteristics on the hot electron contribution to the third-order nonlinear optical response of gold nanoparticles,” Phys. Rev. B 79(4), 045410 (2009). [CrossRef]
  36. R. F. Haglund, L. Yang, R. H. Magruder, J. E. Witting, K. Becker, and R. A. Zuhr, “Picosecond nonlinear optical response of a Cu:silica nanocluster composite,” Opt. Lett. 18(5), 373–375 (1993). [CrossRef] [PubMed]
  37. J.-M. Lamarre, F. Billard, C. H. Kerboua, M. Lequime, S. Roorda, and L. Martinu, “Anisotropic nonlinear optical absorption of gold nanorods in a silica matrix,” Opt. Commun. 281(2), 331–340 (2008). [CrossRef]
  38. B. Karthikeyan, M. Anija, C. S. Suchand Sandeep, T. M. Muhammad Nadeer, and R. Philip, “Optical and nonlinear optical properties of copper nanocomposite glasses annealed near the glass softening temperature,” Opt. Commun. 281(10), 2933–2937 (2008). [CrossRef]
  39. R. Polloni, B. F. Scremin, P. Calvelli, E. Cataruzza, G. Battaglin, and G. Mattei, “Metal nanoparticles-silica composites: Z-scan determination of non-linear refractive index,” J. Non-Cryst. Solids 322(1-3), 300–305 (2003). [CrossRef]
  40. A. Ryasnyansky, B. Palpant, S. Debrus, R. I. Khaibullin, and A. L. Stepanov, “Nonlinear optical properties of copper nanoparticles synthesized in indium tin oxide matrix by ion implantation,” J. Opt. Soc. Am. B 23(7), 1348–1353 (2006). [CrossRef]
  41. J.-S. Kim, K.-S. Lee, and S. S. Kim, “Third-order optical nonlinearity of Cu nanoparticle-dispersed Ba0.5Sr0.5TiO3 films prepared by alternating pulsed laser deposition,” Thin Solid Films 515(4), 2332–2336 (2006). [CrossRef]
  42. J. M. Ballesteros, R. Serna, J. Solís, C. N. Afonso, A. K. Petford-Long, D. H. Osborne, and R. F. Haglund., “Pulsed laser deposition of Cu:Al2O3 nanocrystal thin films with high third-order optical susceptibility,” Appl. Phys. Lett. 71, 2445–2447 (1997). [CrossRef]
  43. V. P. Drachev, A. K. Buin, H. Nakotte, and V. M. Shalaev, “Size dependent χ(3) for conduction electrons in Ag nanoparticles,” Nano Lett. 4(8), 1535–1539 (2004). [CrossRef]
  44. Y. H. Wang, J. D. Lu, R. W. Wang, S. J. Peng, Y. L. Mao, and Y. G. Cheng, “Optical nonlinearities of Au nanocluster composite fabricated by 300 keV ion implantation,” Physica B 403(19-20), 3399–3402 (2008). [CrossRef]
  45. G. Piredda, D. D. Smith, B. Wendling, and R. W. Boyd, “Nonlinear optical properties of a gold-silica composite with high gold fill fraction and the sign change of its nonlinear absorption coefficient,” J. Opt. Soc. Am. B 25(6), 945–950 (2008). [CrossRef]
  46. G. Y. Panasyuk, J. C. Schotland, and V. A. Markel, “Classical theory of optical nonlinearity in conducting nanoparticles,” Phys. Rev. Lett. 100(4), 047402 (2008). [CrossRef] [PubMed]
  47. R. L. Sutherland, “Handbook of Nonlinear Optics,” Marcel Dekker Inc, New York, (1996).
  48. R. P. Davis, A. J. Moad, G. S. Goeken, R. D. Wampler, and G. J. Simpson, “Selection rules and symmetry relations for four-wave mixing measurements of uniaxial assemblies,” J. Phys. Chem. B 112(18), 5834–5848 (2008). [CrossRef] [PubMed]
  49. C. Torres-Torres, M. Trejo-Valdez, P. Santiago-Jacinto, and J. A. Reyes-Esqueda, “Stimulated emission and optical third order nonlinearity in Li-doped nanorods,” J. Phys. Chem C , in press.
  50. P. P. Banerjee, A. Y. Danileiko, T. Hudson, and D. McMillen, “P-scan analysis of inhomogeneously induced optical nonlinearities,” J. Opt. Soc. Am. B 15(9), 2446–2454 (1998). [CrossRef]
  51. V. Rodríguez-Iglesias, “Characterization and optical properties of elongated nanoclusters of Au and Ag embedded in silica,” Ph. D. thesis (2008).
  52. C. D’Orléans, J. P. Stoquert, C. Estournès, C. Cerruti, J. J. Grob, J. L. Guille, F. Haas, D. Muller, and M. Richard-Plouet, “Anisotropy of Co nanoparticles induced by swift heavy ions,” Phys. Rev. B 67(22), 220101 (2003). [CrossRef]
  53. H. G. Silva-Pereyra, J. Arenas-Alatorre, L. Rodríguez-Fernández, A. Crespo-Sosa, J. C. Cheang-Wong, J. A. Reyes-Esqueda, and A. Oliver, “High stability of the crystalline configuration of Au nanoparticles embedded in silica under ion and electron irradiation,” submitted to J. Nanopart. Res. May (2009).
  54. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  55. F. Sanchez, “Two-wave mixing in thin nonlinear local-response media: a simple theoretical model,” J. Opt. Soc. Am. B 9(12), 2196–2205 (1992). [CrossRef]
  56. A. López-Suárez, C. Torres-Torres, R. Rangel-Rojo, J. A. Reyes-Esqueda, G. Santana, J. C. Alonso, A. Ortiz, and A. Oliver, “Modification of the nonlinear optical absorption and optical Kerr response exhibited by nc-Si embedded in a silicon-nitride film,” Opt. Express 17(12), 10056–10068 (2009). [CrossRef] [PubMed]
  57. Y.-F. Chau, M. W. Chen, and D. P. Tsai, “Three-dimensional analysis of surface plasmon resonance modes on a gold nanorod,” Appl. Opt. 48(3), 617–622 (2009). [CrossRef] [PubMed]
  58. U. Gurudas, E. Brooks, D. M. Bubb, S. Heiroth, T. Lippert, and A. Wokaun, “Saturable and reverse saturable absorption in silver nanodots at 532 nm using picosecond laser pulses,” J. Appl. Phys. 104(7), 073107 (2008). [CrossRef]
  59. C. Torres-Torres, J. A. Reyes-Esqueda, J. C. Cheang-Wong, A. Crespo-Sosa, L. Rodríguez-Fernández, and A. Oliver, “Optical third order nonlinearity by nanosecond and picosecond pulses in Cu nanoparticles in ion-implanted silica,” J. Appl. Phys. 104(1), 014306 (2008). [CrossRef]
  60. D. D. Smith, Y. Yoon, R. W. Boyd, J. K. Campbell, L. A. Baker, R. M. Crooks, and M. George, “Z-scan measurement of the nonlinear absorption of a thin gold film,” J. Appl. Phys. 86(11), 6200–6205 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited