OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 15 — Jul. 20, 2009
  • pp: 12875–12890

Analytical investigation on transient thermal effects in pulse end-pumped short-length fiber laser

T. Liu, Z. M. Yang, and S. H. Xu  »View Author Affiliations


Optics Express, Vol. 17, Issue 15, pp. 12875-12890 (2009)
http://dx.doi.org/10.1364/OE.17.012875


View Full Text Article

Enhanced HTML    Acrobat PDF (365 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The transient heat conduction and thermal effects in pulse end-pumped fiber laser are modeled and analytically solved. For the arbitrary temporal shape of pump pulse, a three-dimensional (3D) temperature expression is derived via an integral transform method, and the thermal stress field is deduced through solving the Navier displacement equations. The results show that pulse shape has an important influence on the peak thermal stress and transient phase shift induced by heating of the fiber. Reasonable design for pulse duration and period can reduce thermal effects and optimize the performance of high-power fiber laser.

© 2009 OSA

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: May 26, 2009
Revised Manuscript: June 30, 2009
Manuscript Accepted: July 2, 2009
Published: July 13, 2009

Citation
T. Liu, Z. M. Yang, and S. H. Xu, "Analytical investigation on transient thermal effects in pulse end-pumped short-length fiber laser," Opt. Express 17, 12875-12890 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-15-12875


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Lecaplain, C. Chedot, A. Hideur, B. Ortac, and J. Limpert, “High-average power femtosecond pulse generation from a Yb-doped large-mode-area microstructure fiber laser,” Proc. of SPIE 6873, 68730S1–68730S5 (2008)
  2. M. Eichhorn and S. D. Jackson, “High-pulse-energy actively Q-switched Tm3+-doped silica 2 microm fiber laser pumped at 792 nm,” Opt. Lett. 32(19), 2780–2782 (2007). [CrossRef] [PubMed]
  3. Y. G. Liu, C. S. Zhang, T. T. Sun, Y. F. Lu, Z. Wang, S. Z. Yuan, K. G. Kai, and X. Y. Dong, “Clad-pumped Er3+/Yb3+-doped short pulse fiber laser with high average power output exceeding 2 W,” Acta Phys. Sin. 55, 4679–4685 (2006).
  4. B. Peng, M. L. Gong, P. Yang, and Q. Liu, “Q-switched fiber laser by all-fiber piezoelectric modulation and pulsed pump,” Opt. Commun. 282(10), 2066–2069 (2009). [CrossRef]
  5. Z. Y. Dai, Z. S. Peng, Y. Z. Liu, and Z. H. Ou, “Research on SBS and pulse pumped hybrid Q-switched Er3+/Yb3+ co-doped fiber laser,” Proc. of SPIE 6823, 68231C1–68231C4.
  6. S. L. Hu, C. X. Xie, F. Y. Lu, F. J. Dong, H. J. Wang, S. M. Zhang, and X. Y. Dong, “Analysis the dynamics of pulse pumped Yb-doped double-clad fiber laser,” Acta Photon. Sin. 34, 333–335 (2005).
  7. C. G. Ye, P. Yan, M. Gong, and M. Lei, “Pulsed pumped Yb-doped fiber amplifier at low repetition rate,” Chin. Opt. Lett. 3, 249–250 (2005).
  8. V. Sudesh, T. Mccomb, Y. Chen, M. Bass, M. Richardson, J. Ballato, and A. E. Siegman, “Diode-pumped 200μm diameter core, gain-guided, index-antiguided single mode fiber laser,” Appl. Phys. B 90(3-4), 369–372 (2008). [CrossRef]
  9. D. C. Brown and H. J. Hoffman, “Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers,” IEEE J. Quantum Electron. 37(2), 207–217 (2001). [CrossRef]
  10. M. K. Davis, M. J. F. Digonnet, and R. H. Pantell, “Thermal effects in doped fobers,” J. Lightwave Technol. 16(6), 1013–1023 (1998). [CrossRef]
  11. E. H. Bernhardi, A. Forbes, C. Bollig, and M. J. D. Esser, “Estimation of thermal fracture limits in quasi-continuous-wave end-pumped lasers through a time-dependent analytical model,” Opt. Express 16(15), 11115–11123 (2008). [CrossRef] [PubMed]
  12. W. Koechner, “Transient thermal profile in optically pumped laser rods,” J. Appl. Phys. 44(7), 3162–3170 (1973). [CrossRef]
  13. F. Huang, Y. F. Wang, W. W. Jia, and W. Dong, “Modeling and resolving calculation of thermal effect in face-pumped high power heat capacity disk laser,” Proc. SPIE 6823, 6823111–6823118 (2007).
  14. M. N. Özisik, Heat Conduction (Wiley, New York, 1980).
  15. Z. G. Li, X. L. Huai, L. Wang, and Y. J. Tao, “Influence of longitudinal rise of coolant temperature on the thermal strain in a cylindrical laser rod,” Opt. Lett. 34(2), 187–189 (2009). [CrossRef] [PubMed]
  16. Y. Takeuchi, Thermal Stress (Science, 1977).
  17. T. Liu, Z. M. Yang, and S. H. Xu, “3-Dimensional heat analysis in short-length Er3+/Yb3+ co-doped phosphate fiber laser with upconversion,” Opt. Express 17(1), 235–247 (2009). [CrossRef] [PubMed]
  18. Ansys Finite Element Software Package, http://www.ansys.com/
  19. C. Pfistner, R. Weber, H. P. Wever, S. Merazzi, and R. Gruber, “Thermal beam distortions in end-pumped Nd: YAG, Nd: GSGG, and Nd: YLF rods,” IEEE J. Quantum Electron. 30(7), 1605–1615 (1994). [CrossRef]
  20. P. K. Jain, S. Singh, and Rizwan-uddin, “Analytical solution to transient asymmetric heat conduction in a multilayer annulus,” J. Heat Transfer 131(1), 011304–0113047 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited