OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 15 — Jul. 20, 2009
  • pp: 12929–12943

Mode-locked pulses from mid-infrared Quantum Cascade Lasers

Christine Y. Wang, Lyuba Kuznetsova, V. M. Gkortsas, L. Diehl, F. X. Kärtner, M. A. Belkin, A. Belyanin, X. Li, D. Ham, H Schneider, P. Grant, C. Y. Song, S. Haffouz, Z. R. Wasilewski, H. C. Liu, and Federico Capasso  »View Author Affiliations

Optics Express, Vol. 17, Issue 15, pp. 12929-12943 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1547 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this study, we report the unequivocal demonstration of midinfrared mode-locked pulses from quantum cascade lasers. The train of short pulses was generated by actively modulating the current and hence the gain of an edge-emitting quantum cascade laser (QCL). Pulses with duration of about 3 ps at full-width-at-half-maxima and energy of 0.5 pJ were characterized using a second-order interferometric autocorrelation technique based on a nonlinear quantum well infrared photodetector. The mode-locking dynamics in the QCLs was modeled based on the Maxwell-Bloch equations in an open two-level system. Our model reproduces the overall shape of the measured autocorrelation traces and predicts that the short pulses are accompanied by substantial wings as a result of strong spatial hole burning. The range of parameters where short mode-locked pulses can be formed is found.

© 2009 Optical Society of America

OCIS Codes
(140.3070) Lasers and laser optics : Infrared and far-infrared lasers
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.5965) Lasers and laser optics : Semiconductor lasers, quantum cascade

ToC Category:
Lasers and Laser Optics

Original Manuscript: June 30, 2009
Revised Manuscript: July 7, 2009
Manuscript Accepted: July 7, 2009
Published: July 13, 2009

Christine Y. Wang, Lyuba Kuznetsova, V. M. Gkortsas, L. Diehl, F. X. Kärtner, M. A. Belkin, A. Belyanin, X. Li, D. Ham, H. Schneider, P. Grant, C. Y. Song, S. Haffouz, Z. R. Wasilewski, H.C. Liu, and Federico Capasso, "Mode-locked pulses from mid-infrared Quantum Cascade Lasers," Opt. Express 17, 12929-12943 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. 1. J. J. Macklin, J. D. Kmetec, and C. L. Gordon3rd, "High-order harmonic generation using intense femtosecond pulses," Phys. Rev. Lett. 70(6), 766-769 (1993). [CrossRef]
  2. 2. J. M. Dudley, G. Genty, and S. Coen, "Supercontinuum generation in photonic crystal fiber," Rev. Mod. Phys. 78(4), 1135-1184 (2006). [CrossRef]
  3. 3. E. A. Gibson, A. Paul, N. Wagner, R. Tobey, D. Gaudiosi, S. Backus, I. P. Christov, A. Aquila, E. M. Gullikson, D. T. Attwood, M. M. Murnane, and H. C. Kapteyn, "Coherent soft x-ray generation in the water window with quasi-phase matching," Science 302(5642), 95-98 (2003). [CrossRef]
  4. 4. R. Huber, F. Tauser, A. Brodschelm, M. Bichler, G. Abstreiter, and A. Leitenstorfer, "How many-particle interactions develop after ultrafast excitation of an electron-hole plasma," Nature 414(6861), 286-289 (2001). [CrossRef]
  5. 5. R. Torre, P. Bartolini, and R. Righini, "Structural relaxation in supercooled water by time-resolved spectroscopy," Nature 428(6980), 296-299 (2004). [CrossRef]
  6. 6. D. Meshulach, and Y. Silberberg, "Coherent quantum control of two-photon transitions by a femtosecond laser pulse," Nature 396(6708), 239-242 (1998).
  7. 7. W. S. Warren, H. Rabitz, and M. Dahleh, "Coherent Control of Quantum Dynamics: The Dream Is Alive," Science 259(5101), 1581-1589 (1993). [CrossRef]
  8. 8. T. Udem, R. Holzwarth, and T. W. Hänsch, "Optical frequency metrology," Nature 416(6877), 233-237 (2002). [CrossRef]
  9. 9. P. Loza-Alvarez, C. T. Brown, D. T. Reid, W. Sibbett, and M. Missey, "High-repetition-rate ultrashort-pulse optical parametric oscillator continuously tunable from 2.8 to 6.8 mum," Opt. Lett. 24(21), 1523-1525 (1999). [CrossRef]
  10. 10. S. French, M. Ebrahimzadeh, and A. Miller, "High-power, high-repetition-rate picosecond optical parametric oscillators for the near- to mid-infrared," J. Mod. Opt. 43, 929-952 (1996).
  11. 11. M. R. X. de Barros, R. S. Miranda, T. M. Jedju, and P. C. Becker, "High-Repetition-Rate Femtosecond Midinfrared Pulse Generation," Opt. Lett. 20(5), 480-482 (1995). [CrossRef]
  12. 12. H. Okamoto, and M. Tasumi, "Generation of Ultrashort Light-Pulses in the Midinfrared (3000-800 cm(1)) by 4-Wave-Mixing," Opt. Commun. 121(1-3), 63-68 (1995). [CrossRef]
  13. 13. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum Cascade Laser," Science 264(5158), 553-556 (1994). [CrossRef]
  14. 14. C. Gmachl, D. L. Sivco, R. Colombelli, F. Capasso, and A. Y. Cho, "Ultra-broadband semiconductor laser," Nature 415(6874), 883-887 (2002). [CrossRef]
  15. 15. C. Y. Wang, L. Diehl, A. Gordon, C. Jirauschek, F. X. Kärtner, A. Belyanin, D. Bour, S. Corzine, G. Höfler, M. Troccoli, J. Faist, and F. Capasso, "Coherent instabilities in a semiconductor laser with fast gain recovery," Phys. Rev. A 75(3), 031802 (2007). [CrossRef]
  16. 16. A. Gordon, C. Y. Wang, L. Diehl, F. X. Kärtner, A. Belyanin, D. Bour, S. Corzine, G. Höfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, "Multimode regimes in quantum cascade lasers: From coherent instabilities to spatial hole burning," Phys. Rev. A 77(5), 053804 (2008). [CrossRef]
  17. 17. H. Choi, T. B. Norris, T. Gresch, M. Giovannini, J. Faist, L. Diehl, and F. Capasso, "Femtosecond dynamics of resonant tunneling and superlattice relaxation in quantum cascade lasers," Appl. Phys. Lett. 92(12), 122114-122117 (2008). [CrossRef]
  18. 18. H. A. Haus, "Mode-locking of lasers," IEEE J. Sel. Top. Quantum Electron. 6(6), 1173-1185 (2000).
  19. 19. F. Capasso, J. Faist, C. Sirtori, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, "Laser action by tuning the oscillator strength," Nature 387(6635), 777-782 (1997). [CrossRef]
  20. 20. H. Choi, L. Diehl, Z. K. Wu, M. Giovannini, J. Faist, F. Capasso, and T. B. Norris, "Gain recovery dynamics and photon-driven transport in quantum cascade lasers," Phys. Rev. Lett. 100(16), 167401 (2008). [CrossRef]
  21. 21. R. Paiella, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and H. C. Liu, "Self-mode-locking of quantum cascade lasers with giant ultrafast optical nonlinearities," Science 290(5497), 1739-1742 (2000). [CrossRef]
  22. 22. R. Paiella, F. Capasso, C. Gmachl, H. Y. Hwang, D. L. Sivco, A. L. Hutchinson, A. Y. Cho, and H. C. Liu, "Monolithic active mode locking of quantum cascade lasers," Appl. Phys. Lett. 77(2), 169-171 (2000). [CrossRef]
  23. 23. Soibel, F. Capasso, C. Gmachl, M. L. Peabody, A. M. Sergent, R. Paiella, D. L. Sivco; A. Y. Cho; H. C. Liu, "Stability of pulse emission and enhancement of intracavity second-harmonic generation in self-mode-locked quantum cascade lasers," IEEE J. Quantum Electron. 40(3), 197-204 (2004). [CrossRef]
  24. 24. J.-C. Diels, and W. Rudolph, Ultrashort laser pulse phenomena: fundamentals, techniques, and applications on a femtosecond time scale (Academic Press, Boston, 2nd ed. 2006) [PubMed]
  25. 25. H. C. Liu, and E. Dupont, "Nonlinear quantum well infrared photodetector," J. Nonlinear Opt. Phys. Mater. 11(4), 433-443 (2002). [CrossRef]
  26. 26. T. Maier, H. Schneider, H. Liu, M. Walther, and P. Koidl, "Two-photon QWIPs for quadratic detection of weak mid-infrared laser pulses," Infrared Phys. Technol. 47(1-2), 182-187 (2005). [CrossRef]
  27. 27. P. D. Grant, R. Dudek, M. Buchanan, L. Wolfson, and H. Liu, "An ultra fast quantum well infrared photodetector," Infrared Phys. Technol. 47(1-2), 144-152 (2005). [CrossRef]
  28. 28. S. Barbieri, W. Maineult, S. S. Dhillon, C. Sirtori, J. Alton, N. Breuil, H. E. Beere, and D. A. Ritchie, "13 GHz direct modulation of terahertz quantum cascade lasers," Appl. Phys. Lett. 91(14), 143510 (2007). [CrossRef]
  29. 29. H. C. Liu, Jianmeng Li, M. Buchanan, and Z. R.  Wasilewski, "High-frequency quantum-well infrared photodetectors measured by microwave-rectification technique," IEEE J. Quantum Electron. 32(6), 1024-1028 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited