OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 15 — Jul. 20, 2009
  • pp: 13009–13016

Two-dimensionally relocatable microfiber-coupled photonic crystal resonator

Ju-Young Kim, Myung-Ki Kim, Min-Kyo Seo, Soon-Hong Kwon, Jong-Hwa Shin, and Yong-Hee Lee  »View Author Affiliations

Optics Express, Vol. 17, Issue 15, pp. 13009-13016 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1646 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A photonic crystal microresonator is proposed in this study that is relocatable in two dimensions. A wavelength-scale resonator with high Q-factor (26,000) and high collection efficiency (80%) is formed and repositioned by simply placing and relocating a curved-microfiber to a new position on the surface of a two-dimensional square lattice photonic crystal slab. The formation of the resonator was confirmed by observing lasing of resonators. Infrared microscope images showed that the lasing site is two-dimensionally relocated in-situ. Spectral tuning was demonstrated by modifying the curvature of the microfiber. Functionalities, such as the two-dimensional relocation, spectral tuning and efficient extraction, which the curved-microfiber coupling offers, may provide an alternative way of coupling with a single quantum dot.

© 2009 Optical Society of America

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(140.3945) Lasers and laser optics : Microcavities
(220.4241) Optical design and fabrication : Nanostructure fabrication
(230.5298) Optical devices : Photonic crystals

ToC Category:
Photonic Crystals

Original Manuscript: May 4, 2009
Revised Manuscript: July 8, 2009
Manuscript Accepted: July 8, 2009
Published: July 15, 2009

Ju-Young Kim, Myung-Ki Kim, Min-Kyo Seo, Soon-Hong Kwon, Jong-Hwa Shin, and Yong-Hee Lee, "Two-dimensionally relocatable microfiber-coupled photonic crystal resonator," Opt. Express 17, 13009-13016 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284, 1819-1821 (1999). [CrossRef] [PubMed]
  2. H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, "Electrically Driven Single-Cell Photonic Crystal Laser," Science 305, 1444-1447 (2004). [CrossRef] [PubMed]
  3. K.  Nozaki, T.  Ide, J.  Hashimoto, W. H.  Zheng, and T.  Baba, "Photonic crystal point shift nanolaser with ultimate small modal volume," Electron. Lett.  41, 843-845 (2005). [CrossRef]
  4. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, "All-optical switches on a silicon chip realized using photonic crystal nanocavities," Appl. Phys. Lett. 87, 151112 (2005). [CrossRef]
  5. M.-K. Kim, I.-K. Hwang, S.-H. Kim, H.-J. Chang, and Y.-H. Lee, "All-optical bistable switching in curved microfiber-coupled photonic crystal resonators," Appl. Phys. Lett. 90,161118 (2007). [CrossRef]
  6. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004). [CrossRef] [PubMed]
  7. K.  Hennessy, A.  Badolato, M.  Winger, D.  Gerace, M.  Atatüre, S.  Gulde, S.  Fält, E. L.  Hu, and A.  Imamoğlu, "Quantum nature of a strongly coupled single quantum dot-cavity system," Nature  445, 896-899 (2007) [CrossRef] [PubMed]
  8. D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučković, "Controlling cavity reflectivity with a single quantum dot," Nature 450, 857-861 (2007) [CrossRef] [PubMed]
  9. B. S. Song, S. Noda, T. Asano, and Y. Akahane, "Ultra-high-Q photonic double-heterostructure nanocavity," Nat. Mater. 4, 207-210 (2005). [CrossRef]
  10. T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, "Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity," Nat. Photonics 1, 49-52 (2006) [CrossRef]
  11. S.-H. Kwon, T. Sünner, M. Kamp, and A. Forchel, "Ultrahigh-Q photonic crystal cavity created by modulating air hole radius of a waveguide," Opt. Express 16, 4605-4614 (2008) [CrossRef] [PubMed]
  12. B.-S. Song, T. Asano, and S. Noda, "Physical origin of the small modal volume of ultra-high-Q photonic double-heterostructure nanocavities," New J. Phys. 8209 (2006) [CrossRef]
  13. S. Tomljenovic-Hanic, C. M. Sterke, and M. J. Steel, "Design of high-Q cavities in photonic crystal slab heterostructures by air-holes infiltration," Opt. Express 14, 12451-12456 (2006) [CrossRef] [PubMed]
  14. C. L. C. Smith, D. K. C. Wu, M. W. Lee, C. Monat, S. Tomljenovic-Hanic, C. Grillet, B. J. Eggleton, D. Freeman, Y. Ruan, S. Madden, B. Luther-Davies, H. Giessen, and Y.-H. Lee, "Microfluidic photonic crystal double heterostructures," Appl. Phys. Lett. 91, 121103 (2007). [CrossRef]
  15. S.  Gardin, F.  Bordas, X.  Letartre, C.  Seassal, A.  Rahmani, R.  Bozio, and P.  Viktorovitch, "Microlasers based on effective index confined slow light modes in photonic crystal waveguides," Opt. Express  16, 6331-6339 (2008) [CrossRef] [PubMed]
  16. M.-K. Seo, J.-H. Kang, M.-K. Kim, B.-H. Ahn, J.-Y. Kim, K.-Y. Jeong, H.-G Park, and Y.-H. Lee, "Wavelength-scale photonic-crystal laser formed by electron-beam-induced nano-block deposition," Opt. Express 17, 6790-6798 (2009). [CrossRef] [PubMed]
  17. S. Tomljenovic-Hanic, M. J. Steel, C. M. Sterke, and D. J. Moss, "High-Q cavities in photosensitive photonic crystals," Opt. Lett. 32, 542-544 (2007) [CrossRef] [PubMed]
  18. M. Notomi and H. Taniyama, "On-demand ultrahigh-Q cavity formation and photon pinning via dynamic waveguide tuning," Opt. Express 16, 18657-18666 (2008) [CrossRef]
  19. M.-K. Kim, I.-K. Hwang, M.-K. Seo, and Y.-H. Lee, "Reconfigurable microfiber-coupled photonic crystal resonator," Opt. Express 15, 17241-17247 (2007). [CrossRef] [PubMed]
  20. C. Kim, W. J. Kim, A. Stapleton, J.-R. Cao, J. D. O’Brien, and P. D. Dapkus, "Quality factors in single-defect photonic-crystal lasers with asymmetric cladding layers," J. Opt. Soc. Am. B 19, 1777-1781 (2002). [CrossRef]
  21. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejaki, "Guided modes in photonic crystal slabs," Phys. Rev. B 60, 5751-5758 (1999). [CrossRef]
  22. I.-K. Hwang, S.-K. Kim, J.-K. Yang, S.-H. Kim, S.-H. Lee, and Y.-H. Lee, "Curved-microfiber photon coupling for photonic crystal light emitter," Appl. Phys. Lett. 87, 131107 (2005). [CrossRef]
  23. M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, "Laser action from two-dimensional distributed feedback in photonic crystals," Appl. Phys. Lett. 74, 7-9 (1999). [CrossRef]
  24. S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, "Polarization Mode Control of Two-Dimensional Photonic Crystal Laser by Unit Cell Structure Design," Science 293, 1123-1125 (2001). [CrossRef] [PubMed]
  25. S.-H. Kwon, H.-Y. Ryu, G.-H. Kim, and Y.-H. Lee, "Photonic bandedge lasers in two-dimensional square-lattice photonic crystal slabs," Appl. Phys. Lett. 83,3870-3872 (2003). [CrossRef]
  26. K. Kiyota, T. Kise, N. Yokouchi, T. Ide, and T. Baba, "Various low group velocity effects in photonic crystal line defect waveguides and their demonstration by laser oscillation," Appl. Phys. Lett. 88, 201904 (2006). [CrossRef]
  27. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, "Extremely large group velocity dispersion of line-defect waveguides in photonic crystal slabs," Phys. Rev. Lett. 87, 253902 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited