OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 15 — Jul. 20, 2009
  • pp: 13017–13030

Effect of input states of polarization on the measurement error of Mueller matrix in a system having small polarization-dependent loss or gain

H. Dong, Y. D. Gong, Varghese Paulose, P. Shum, and Malini Olivo  »View Author Affiliations


Optics Express, Vol. 17, Issue 15, pp. 13017-13030 (2009)
http://dx.doi.org/10.1364/OE.17.013017


View Full Text Article

Enhanced HTML    Acrobat PDF (304 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

For the measurement of Mueller matrix in an optical system with birefringence and small polarization-dependent loss or gain (PDL/G), we theoretically derive the statistical relationship between the Mueller matrix measurement error and three input states of polarization (SOP). Based on this theoretical relation and simulation results, it can be concluded that the three input SOPs, that are coplanar with an angle of 120° between any two of them in Stokes space, can be considered as a substitute for the best input SOPs which can statistically lead to the minimum measurement error. This conclusion is valid when the PDL/G of the optical system under test is less than 0.35dB.

© 2009 OSA

OCIS Codes
(060.2300) Fiber optics and optical communications : Fiber measurements
(060.2310) Fiber optics and optical communications : Fiber optics
(260.3090) Physical optics : Infrared, far
(260.5430) Physical optics : Polarization

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: May 7, 2009
Revised Manuscript: June 21, 2009
Manuscript Accepted: June 23, 2009
Published: July 15, 2009

Citation
H. Dong, Y. D. Gong, Varghese Paulose, P. Shum, and Malini Olivo, "Effect of input states of polarization on the measurement error of Mueller matrix in a system having small polarization-dependent loss or gain," Opt. Express 17, 13017-13030 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-15-13017


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Gisin and B. Huttner, “Combined effects of polarization mode dispersion and polarization dependent losses in optical fibers,” Opt. Commun. 142(1-3), 119–125 (1997). [CrossRef]
  2. J. Xu, J. Galan, G. Ramin, P. Savvidis, A. Scopatz, R. R. Birge, S. J. Allen, and K. Plaxco, “Terahertz circular dichroism spectroscopy of biomolecules,” Proc. SPIE 5268, 19–26 (2004). [CrossRef]
  3. R. M. Craig, S. L. Gilbert, and P. D. Hale, “High-resolution, nonmechanical approach to polarization-dependent transmission measurements,” IEEE J. Lightwave Technol. 16(7), 1285–1294 (1998). [CrossRef]
  4. H. Dong, P. Shum, M. Yan, J. Q. Zhou, G. X. Ning, Y. D. Gong, and C. Q. Wu, “Generalized Mueller matrix method for polarization mode dispersion measurement in a system with polarization-dependent loss or gain,” Opt. Express 14(12), 5067–5072 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-12-5067 . [CrossRef] [PubMed]
  5. B. L. Heffner, “Deterministic, analytically complete measurement of polarization-dependent transmission though optical devices,” IEEE Photon. Technol. Lett. 4(5), 451–454 (1992). [CrossRef]
  6. B. L. Heffner, “Automated measurement of polarization mode dispersion using Jones matrix eigenanalysis,” IEEE Photon. Technol. Lett. 4(9), 1066–1069 (1992). [CrossRef]
  7. D. H. Goldstein, “Mueller matrix dual-rotating retarder polarimeter,” Appl. Opt. 31(31), 6676–6683 (1992). [CrossRef] [PubMed]
  8. S.-M. F. Nee, “Depolarization and principal mueller matrix measured by null ellipsometry,” Appl. Opt. 40(28), 4933–4939 (2001). [CrossRef]
  9. B. J. Howell, “Measurement of the polarization effect of an instrument using partially polarized light,” Appl. Opt. 18(6), 809–812 (1979). [CrossRef] [PubMed]
  10. D. B. Chenault, R. A. Chipman, K. M. Johnson, and D. Doroski, “Infrared linear diattenuation and birefringence spectra of ferroelectric liquid crystals,” Opt. Lett. 17(6), 447–449 (1992). [CrossRef] [PubMed]
  11. H. Dong, Y. D. Gong, and M. H. Hong, “Polarization state and Mueller matrix measurements in terahertz time domain spectroscopy,” Opt. Commun. (Accepted).
  12. R. C. Jones, “A new calculus for the treatment of optical systems VI. Experimental determination of the matrix,” J. Opt. Soc. Am. 37(2), 110–112 (1947). [CrossRef]
  13. H. Dong, P. Shum, M. Yan, J. Q. Zhou, G. X. Ning, Y. D. Gong, and C. Q. Wu, “Measurement of Mueller matrix for an optical fiber system with birefringence and polarization-dependent loss or gain,” Opt. Commun. 274(1), 116–123 (2007). [CrossRef]
  14. A. Ambirajan and D. C. Look, “Optimum angles for a polarimeter: part I,” Opt. Eng. 34(6), 1651–1655 (1995). [CrossRef]
  15. A. Ambirajan and D. C. Look, “Optimum angles for a polarimeter: part II,” Opt. Eng. 34(6), 1656–1658 (1995). [CrossRef]
  16. J. S. Tyo, “Design of optimal polarimeters: maximization of signal-to-noise ratio and minimization of systematic error,” Appl. Opt. 41(4), 619–630 (2002). [CrossRef] [PubMed]
  17. Y. Takakura and J. E. Ahmad, “Noise distribution of Mueller matrices retrieved with active rotating polarimeters,” Appl. Opt. 46(30), 7354–7364 (2007). [CrossRef] [PubMed]
  18. S.-M. F. Nee, “Error analysis for Mueller matrix measurement,” J. Opt. Soc. Am. A 20(8), 1651–1657 (2003). [CrossRef]
  19. D. H. Goldstein and R. A. Chipman, “Error analysis of a Mueller matrix polarimeter,” J. Opt. Soc. Am. A 7(4), 693–700 (1990). [CrossRef]
  20. H. Dong and P. Shum, “Effect of input polarization states on the error of polarization measurement,” Opt. Eng. 47(6), 065007 (2008). [CrossRef]
  21. R. Barakat, “Theory of the coherency matrix for light of arbitrary spectral bandwidth,” J. Opt. Soc. Am. 53(3), 317–323 (1963). [CrossRef]
  22. R. Barakat, “Bilinear constraints between elements of the 4x4 Mueller-Jones transfer matrix of polarization theory,” Opt. Commun. 38(3), 159–161 (1981). [CrossRef]
  23. S.-Y. Lu and R. A. Chipman; “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13(5), 1106–1113 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited