OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 15 — Jul. 20, 2009
  • pp: 13059–13069

Coherence properties of spontaneous parametric down-conversion pumped by a multi-mode cw diode laser

Osung Kwon, Young-Sik Ra, and Yoon-Ho Kim  »View Author Affiliations


Optics Express, Vol. 17, Issue 15, pp. 13059-13069 (2009)
http://dx.doi.org/10.1364/OE.17.013059


View Full Text Article

Enhanced HTML    Acrobat PDF (1790 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Coherence properties of the photon pair generated via spontaneous parametric down-conversion pumped by a multi-mode cw diode laser are studied with a Mach-Zehnder interferometer. Each photon of the pair enters a different input port of the interferometer and the biphoton coherence properties are studied with a two-photon detector placed at one output port. When the photon pair simultaneously enters the interferometer, periodic recurrence of the biphoton de Broglie wave packet is observed, closely resembling the coherence properties of the pump diode laser. With non-zero delays between the photons at the input ports, biphoton interference exhibits the same periodic recurrence but the wave packet shapes are shown to be dependent on both the input delay as well as the interferometer delay. These properties could be useful for building engineered entangled photon sources based on diode laser-pumped spontaneous parametric down-conversion.

© 2009 Optical Society of America

OCIS Codes
(270.1670) Quantum optics : Coherent optical effects
(270.5290) Quantum optics : Photon statistics
(270.5565) Quantum optics : Quantum communications
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: June 5, 2009
Revised Manuscript: July 9, 2009
Manuscript Accepted: July 9, 2009
Published: July 15, 2009

Citation
Osung Kwon, Young-Sik Ra, and Yoon-Ho Kim, "Coherence properties of spontaneous parametric down-conversion pumped by a multi-mode cw diode laser," Opt. Express 17, 13059-13069 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-15-13059


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. P. Dowling and G. J. Milburn, "Quantum technology: the second quantum revolution," Phil. Trans. R. Soc. Lond. A 361, 1655-1674 (2003). [CrossRef]
  2. N. Gisin, G. Ribordy,W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74, 145-195 (2002). [CrossRef]
  3. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, "Linear optical quantum computing with photonic qubits," Rev. Mod. Phys. 79, 135-174 (2007). [CrossRef]
  4. Y. H. Shih and C. O. Alley, "New Type of Einstein-Podolsky-Rosen-Bohm Experiment Using Pairs of Light Quants Produced by Optical Parametric Down Conversion," Phys. Rev. Lett. 61, 2921-2924 (1988). [CrossRef] [PubMed]
  5. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. H. Shih, "New High-Intensity Source of Polarization-Entangled Photon Pairs," Phys. Rev. Lett. 75, 4337-4341 (1995). [CrossRef] [PubMed]
  6. Y.-H. Kim, S. P. Kulik, M. V. Chekhova, W. P. Grice, and Y. Shih, "Experimental entanglement concentration and universal Bell-state synthesizer," Phys. Rev. A 67, 010301(R) (2003). [CrossRef]
  7. J. G. Rarity and P. R. Tapster, "Experimental Violation of Bell’s Inequality Based on Phase and Momentum," Phys. Rev. Lett. 64, 2495-2498 (1990). [CrossRef] [PubMed]
  8. D. V. Strekalov, T. B. Pittman, A. V. Sergienko, Y. H. Shih, and P. G. Kwiat, "Postselection-free energy-time entanglement," Phys. Rev. A 54, R1-R4 (1996). [CrossRef] [PubMed]
  9. W. P. Grice, A. B. U’Ren, and I. A. Walmsley, "Elimanating frequency and space-tie corelations in multiphoton states," Phys. Rev. A 64, 063815 (2001). [CrossRef]
  10. Y.-H. Kim and W. P. Grice, "Generation of pulsed polarization-entangled two-photon state via temporal and spectral engineering," J. Mod. Opt. 49, 2309-2323 (2002). [CrossRef]
  11. A. Valencia, A. Cere, X. Shi, G. Molina-Terriza, and J. P. Torres, "Shaping theWaveform of Entangled Photons," Phys. Rev. Lett. 99, 243601 (2007). [CrossRef]
  12. P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A.Walmsley, "Heralded Generation of Ultrafast Single Photons in Pure Quantum States," Phys. Rev. Lett. 100, 133601 (2008). [CrossRef] [PubMed]
  13. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, "Ultrabright source of polarizationentangled photons," Phys. Rev. A 60, R773-R776 (1999). [CrossRef]
  14. Y.-H. Kim, M. V. Chekhova, S. P. Kulik, M. H. Rubin, and Y. Shih, "Interferometric Bell-state preparation using femtosecond-pulse-pumped spontaneous parametric down-conversion," Phys. Rev. A 63, 062301 (2001). [CrossRef]
  15. Y.-H. Kim and W. P. Grice, "Measurement of the spectral properties of the two-photon state generated via type II spontaneous parametric downconversion," Opt. Lett. 30, 908-910 (2005). [CrossRef] [PubMed]
  16. A. V. Burlakov, M. V. Chekhova, O. A. Karabutova, and S. P Kulik, "Biphoton interference with a multimode pump," Phys. Rev. A 63, 053801 (2001). [CrossRef]
  17. The Wiener-Khinchine theorem states that the spectral power density of an optical field is related to its autocorrelation. They are, in fact, a Fourier transform pair. It is not difficult to show that the following relation holds, ⊗⌊FWHM = (4ln2/) 2 center/LFWHM. Here ⊗FWHM is the FWHM bandwidth of the field, center is the central wavelength of the laser (405 nm), and LFWHM is the FWHM width of the autocorrelation (interferogram) in Fig. 2.
  18. J. W. Goodman, Statistical optics (Wiley, New York, 1985), p. 230.
  19. S.-Y. Baek, O. Kwon, and Y.-H. Kim, "High-Resolution Mode-Spacing Measurement of the Blue-Violet Diode Laser Using Interference of Felds Created with Time Delays Greater than the Coherence Time," Jpn. J. Appl. Phys. 46, 7720-7723 (2007). [CrossRef]
  20. Y. J. Lu, R. L. Campbell, and Z. Y. Ou, "Mode-locked two-photon states," Phys. Rev. Lett. 91, 163602 (2003). [CrossRef] [PubMed]
  21. M. A. Sagioro, C. Olindo, C. H. Monken, and S. Pádua, "Time control of two-photon interference," Phys. Rev. A 69, 053817 (2004). [CrossRef]
  22. A. Zavatta, S. Viciani, and M. Bellini, "Recurrent fourth-order interference dips and peaks with a comblike two-photon entangled state," Phys. Rev. A 70, 023806 (2004). [CrossRef]
  23. C. K. Hong, Z. Y. Ou, and L. Mandel, "Measurement of subpicosecond time intervals between two photons by interference," Phys. Rev. Lett. 59, 2044-2046 (1987). [CrossRef] [PubMed]
  24. J. Jacobson, G. Bjork, I. Chuang, and Y. Yamamoto, "Photonic de Broglie waves," Phys. Rev. Lett. 74, 4835-4838 (1995). [CrossRef] [PubMed]
  25. K. Edamatsu, R. Shimizu, and T. Itoh, "Measurement of the Photonic de BroglieWavelength of Entangled Photon Pairs Generated by Spontaneous Parametric Down-Conversion," Phys. Rev. Lett. 89, 213601 (2002). [CrossRef] [PubMed]
  26. J. G. Rarity, P. R. Tapster, E. Jakeman, T. Larchuk, R. A. Campos, M. C. Teich, and B. E. A. Saleh, "Two-photon interference in a Mach-Zehnder interferometer," Phys. Rev. Lett. 65, 1348-1351 (1990). [CrossRef] [PubMed]
  27. Z. Y. Ou, X. Y. Zou, L. J. Wang, and L. Mandel, "Experiment on nonclassical fourth-order interference," Phys. Rev. A 42, 2957-2965 (1990). [CrossRef] [PubMed]
  28. J. Brendel, N. Gisin, W. Tittel, and H. Zbinden, "Pulsed Energy-Time Entangled Twin-Photon Source for Quantum Communication," Phys. Rev. Lett. 82, 2594-2597 (1999). [CrossRef]
  29. Y.-H. Kim, V. Berardi, M. V. Chekhova, A. Garuccio, and Y. H. Shih, "Temporal indistinguishability and quantum interference," Phys. Rev. A 62, 43820 (2000). [CrossRef]
  30. S.-Y. Baek and Y.-H. Kim, "Spectral properties of entangled photon pairs generated via frequency-degenerate type-I spontaneous parametric down-conversion," Phys. Rev. A 77, 043807 (2008). [CrossRef]
  31. We have measured the transmission function of the interference filters used in this experiment with an Agilent 8453 UV/VIS spectro-photometer. We have found that the transmission function is indeed very close Gaussian centered at 810 nm as assumed in eq. (10).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited