OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 15 — Jul. 20, 2009
  • pp: 13095–13101

New wide strip and grating loaded quasi-single-mode waveguide on SOI

Andrei V. Tsarev  »View Author Affiliations


Optics Express, Vol. 17, Issue 15, pp. 13095-13101 (2009)
http://dx.doi.org/10.1364/OE.17.013095


View Full Text Article

Enhanced HTML    Acrobat PDF (445 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

New wide single mode strip and grating loaded waveguide on thin silicon-on-insulator CMOS compatible structure is proposed and analyzed. Waveguide is built by silicon nitride strip and gratings placed on silica cover of slab silicon. This structure is similar to conventional strip-loaded waveguide but differs by additional gratings near the strip sides. Numerical 3D simulations by FDTD and BPM prove that the side gratings with period 0.6 µm and depth 0.16 µm provide the high Figure of merit for higher order mode suppression and built quasi-single-mode waveguide with mode size ~10 µm and propagation loss ~0.3 dB/cm.

© 2009 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(230.7380) Optical devices : Waveguides, channeled

ToC Category:
Integrated Optics

History
Original Manuscript: May 19, 2009
Revised Manuscript: July 1, 2009
Manuscript Accepted: July 6, 2009
Published: July 20, 2009

Citation
Andrei V. Tsarev, "New wide strip and grating loaded quasi-single-mode waveguide on SOI," Opt. Express 17, 13095-13101 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-15-13095


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. T. Reed, Silicon Photonics. State of the Art (John Wiley & Sons, Ltd, 2008).
  2. R. A. Soref, J. Schmidtchen, and K. Petermann, "Large Single mode rib waveguides in GeSi-Si and Si-on-SiO2," J. Quantum Electron. 27(8), 1971-1974 (1991). [CrossRef]
  3. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout, "Nanophotonic Waveguides in Silicon-on-Insulator Fabricated With CMOS Technology," J. Lightwave Technol. 23(1), 401-412 (2005). [CrossRef]
  4. R. Pafchek, R. Tummidi, J. Li, M. A. Webster, E. Chen, and T. L. Koch, "Low-loss silicon-on-insulator shallowridge TE and TM waveguides formed using thermal oxidation," Appl. Opt. 48(5), 958-963 (2009). [CrossRef]
  5. J. Cardenas, C. B. Poitras, J. T. Robinson, K. Preston, L. Chen, and M. Lipson, "Low loss etchless silicon photonic waveguides," Opt. Express 17(6), 4752-4757 (2009). [CrossRef]
  6. D. Taillaert, Harold Chong, P. I. Borel, L. H. Frandsen, R. M. De La Rue, and R. Baets, "A compact twodimensional grating coupler used as a polarization splitter," IEEE Photon. Technol. Lett. 15(9), 1249-1251 (2003). [CrossRef]
  7. W. Bogaerts, D. Taillaert, P. Dumon, D. Van Thourhout, R. Baets, and E. Pluk, "A polarization-diversity wavelength duplexer circuit in silicon-on-insulator photonic wires," Opt. Express 15(4), 1567-1578 (2007). [CrossRef]
  8. W. Bogaerts, P. Dumon, D. V. Thourhout, and R. Baets, "Low-loss, low-cross-talk crossings for silicon-oninsulator nanophotonic waveguides," Opt. Lett. 32(19), 2801-2803 (2007). [CrossRef]
  9. A. V. Tsarev, "Tunable optical filters," United States Patent No 6,999,639, February 14, 2006.
  10. A. V. Tsarev, V. M. N. Passaro, and F. Magno, "Widely Tunable Reconfigurable Optical Add/Drop Multiplexers in Silicon-on-Insulator Technology: a New Approach," in Silicon Photonics, V.M.N. Passaro Ed., Research Signpost Publ., Trivandrum, Kerala, India: ISBN: 81-308-0077-2, 47-77 (2006).
  11. Y. Zhou, V. Karagodsky, B. Pesala, F. G. Sedgwick, and C. J. Chang-Hasnain, "A novel ultra-low loss hollowcore waveguide using subwavelength high-contrast gratings," Opt. Express 17(3), 1508-1517 (2009). [CrossRef]
  12. A. V. Tsarev, "New type of heterogeneous nanophotonic silicon-on-insulator optical waveguides," Quantum Electron. 37(8), 775-776 (2007). [CrossRef]
  13. A. V. Tsarev, "Thin heterogeneous optical silicon-on-insulator waveguides and their application in reconfigurable optical multiplexers," Quantum Electron. 38(5), 445-451 (2008). [CrossRef]
  14. A. V. Tsarev, F. De Leonardis, and V. M. N. Passaro, "Thin heterogeneous SOI waveguides for thermo-optical tuning and filtering," Opt. Express 16(5), 3101-3113 (2008). [CrossRef]
  15. F. De Leonardis, A. V. Tsarev, and V. M. Passaro, "Optical properties of new wide heterogeneous waveguides with thermo optical shifters," Opt. Express 16(26), 21333-21338 (2008). [CrossRef]
  16. www.rsoftdesign.com, Rsoft Photonic CAD Suite, ver. 8.0, single license (2007).
  17. R. V. Ramaswamy, "Strip loaded film waveguides," Bell Syst. Tech. J. 53, 697-704 (1974).
  18. Y. He, L. Yang, Q. Fang, H. Xin, F. Li, and Y. Liu, "Influence of thermal isolating grooves on the performance of the Mach-Zehnder interferometer-type thermo-optic variable optical attenuator," Opt. Eng. 44(4), 040504 (2005). [CrossRef]
  19. N. Daldosso, M. Melchiorri, F. Riboli, M. Girardini, G. Pucker, M. Crivellari, P. Bellutti, A. Lui, and L. Pavesi, "Comparison Among Various Si3N4 Waveguide Geometries Grown Within a CMOS Fabrication Pilot Line," J. Lightwave Technol. 22, 1734-1740 (2004). [CrossRef]
  20. S. M. Rytov, "Electromagnetic properties of a finely stratified medium," Sov. Phys. JETP 2, 466-475 (1956).
  21. H. Kikuta, H. Toyota, and W. Yu, "Optical elements with subwavelength structured surfaces," Opt. Rev. 10(2), 63-73 (2003). [CrossRef]
  22. M. Borselli, Th. Johnson, and O. Painter, "Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment," Opt. Express 13(5), 1515-1530 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig.1. Fig.2. Fig.3.
 
Fig.4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited