OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 15 — Jul. 20, 2009
  • pp: 13151–13156

Optical induction of three-dimensional photonic lattices and enhancement of discrete diffraction

Peng Zhang, Robert Egger, and Zhigang Chen  »View Author Affiliations


Optics Express, Vol. 17, Issue 15, pp. 13151-13156 (2009)
http://dx.doi.org/10.1364/OE.17.013151


View Full Text Article

Enhanced HTML    Acrobat PDF (347 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate experimentally the formation of three-dimensional (3D) reconfigurable photonic lattices in a bulk nonlinear crystal by employing the optical induction technique. Such 3D lattices are established by inducing 2D square lattices in two orthogonal directions. The induced 3D periodic index structures are monitored by plane-wave guidance and Brillouin zone spectroscopy. Enhanced discrete diffraction due to the waveguide modulation and coupling in 3D lattices is also observed.

© 2009 OSA

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(190.0190) Nonlinear optics : Nonlinear optics
(230.4000) Optical devices : Microstructure fabrication
(230.7370) Optical devices : Waveguides
(160.5293) Materials : Photonic bandgap materials

ToC Category:
Photonic Crystals

History
Original Manuscript: June 22, 2009
Revised Manuscript: July 9, 2009
Manuscript Accepted: July 10, 2009
Published: July 20, 2009

Citation
Peng Zhang, Robert Egger, and Zhigang Chen, "Optical induction of three-dimensional photonic lattices and enhancement of discrete diffraction," Opt. Express 17, 13151-13156 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-15-13151


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: Putting a new twist on light,” Nature 386(6621), 143–149 (1997). [CrossRef]
  2. E. Yablonovitch, “Photonic band-gap structures,” J. Opt. Soc. Am. B 10(2), 283 (1993). [CrossRef]
  3. Y. Xia, B. Gates, and Z.-Y. Li, “Self-assembly approaches to 3D photonic crystals,” Adv. Mater. 13, 409 (2001). [CrossRef]
  4. A. Blaaderen, R. Ruel, and P. Wiltzius, “Template-directed colloidal crystallization,” Nature 385(6614), 321–324 (1997). [CrossRef]
  5. S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith, R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and J. Bur, “A 3D photonic crystal operating at infrared wavelengths,” Nature 394(6690), 251–253 (1998). [CrossRef]
  6. M. C. Wanke, O. Lehmann, K. Muller, Q. Wen, and M. Stuke, “Laser rapid prototyping of photonic band-gap microstructures,” Science 275(5304), 1284–1286 (1997). [CrossRef] [PubMed]
  7. M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turberfield, “Fabrication of three-dimensional photonic crystals by holographic lithography,” Nature 404(6773), 53–56 (2000). [CrossRef] [PubMed]
  8. J.-H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Koh, and E. L. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17(16), 3027–3041 (2007). [CrossRef]
  9. F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, “Discrete solitons in optics,” Phys. Rep. 463(1-3), 1–126 (2008). [CrossRef]
  10. N. K. Efremidis, S. Sears, D. N. Christodoulides, J. W. Fleischer, and M. Segev, “Discrete solitons in photorefractive optically induced photonic lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 66(4), 046602 (2002). [CrossRef] [PubMed]
  11. Z. Chen and K. McCarthy, “Spatial soliton pixels from partially incoherent light,” Opt. Lett. 27(22), 2019–2021 (2002). [CrossRef]
  12. J. W. Fleischer, M. Segev, N. K. Efremidis, and D. N. Christodoulides, “Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices,” Nature 422(6928), 147–150 (2003). [CrossRef] [PubMed]
  13. H. Martin, E. D. Eugenieva, Z. Chen, and D. N. Christodoulides, “Discrete solitons and soliton-induced dislocations in partially coherent photonic lattices,” Phys. Rev. Lett. 92(12), 123902 (2004). [CrossRef] [PubMed]
  14. H. S. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, “Diffraction management,” Phys. Rev. Lett. 85(9), 1863–1866 (2000). [CrossRef] [PubMed]
  15. M. J. Ablowitz and Z. H. Musslimani, “Discrete diffraction managed spatial solitons,” Phys. Rev. Lett. 87(25), 254102 (2001). [CrossRef] [PubMed]
  16. G. Lenz, I. Talanina, and C. M. de Sterke, “Bloch oscillations in an array of curved optical waveguides,” Phys. Rev. Lett. 83(5), 963–966 (1999). [CrossRef]
  17. S. Longhi, M. Marangoni, M. Lobino, R. Ramponi, P. Laporta, E. Cianci, and V. Foglietti, “Observation of dynamic localization in periodically curved waveguide arrays,” Phys. Rev. Lett. 96(24), 243901 (2006). [CrossRef] [PubMed]
  18. Y. V. Kartashov, L. Torner, and D. N. Christodoulides, “Soliton dragging by dynamic optical lattices,” Opt. Lett. 30(11), 1378–1380 (2005). [CrossRef] [PubMed]
  19. C. R. Rosberg, I. L. Garanovich, A. A. Sukhorukov, D. N. Neshev, W. Krolikowski, and Y. S. Kivshar, “Demonstration of all-optical beam steering in modulated photonic lattices,” Opt. Lett. 31(10), 1498–1500 (2006). [CrossRef] [PubMed]
  20. K. G. Makris, D. N. Christodoulides, O. Peleg, M. Segev, and D. Kip, “Optical transitions and Rabi oscillations in waveguide arrays,” Opt. Express 16(14), 10309–10314 (2008). [CrossRef] [PubMed]
  21. K. Shandarova, C. E. Rüter, D. Kip, K. G. Makris, D. N. Christodoulides, O. Peleg, and M. Segev, “Experimental observation of Rabi oscillations in photonic lattices,” Phys. Rev. Lett. 102(12), 123905 (2009). [CrossRef] [PubMed]
  22. I. L. Garanovich, A. Szameit, A. A. Sukhorukov, T. Pertsch, W. Krolikowski, S. Nolte, D. Neshev, A. Tuennermann, and Y. S. Kivshar, “Diffraction control in periodically curved two-dimensional waveguide arrays,” Opt. Express 15(15), 9737–9747 (2007). [CrossRef] [PubMed]
  23. A. Szameit, I. L. Garanovich, M. Heinrich, A. A. Sukhorukov, F. Dreisow, T. Pertsch, S. Nolte, A. Tünnermann, and Y. S. Kivshar, “Polychromatic dynamic localization in curved photonic lattices,” Nat. Phys. 5(4), 271–275 (2009). [CrossRef]
  24. P. G. Kevrekidis, J. Gagnon, D. J. Frantzeskakis, and B. A. Malomed, “X, Y, and Z waves: extended structures in nonlinear lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 75(1), 016607 (2007). [CrossRef] [PubMed]
  25. H. Leblond, B. A. Malomed, and D. Mihalache, “Three-dimensional vortex solitons in quasi-two-dimensional lattices,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 76(2), 026604 (2007). [CrossRef] [PubMed]
  26. Z. Chen, and J. Yang, “Controlling light in reconfigurable photonic lattices,” in Nonlinear Optics and Applications, H. Abdeldayem and D. O. Frazier, eds. (Research Signpost, 2007).
  27. G. Bartal, O. Cohen, H. Buljan, J. W. Fleischer, O. Manela, and M. Segev, “Brillouin zone spectroscopy of nonlinear photonic lattices,” Phys. Rev. Lett. 94(16), 163902 (2005). [CrossRef] [PubMed]
  28. B. Terhalle, A. S. Desyatnikov, C. Bersch, D. Träger, L. Tang, J. Imbrock, Y. S. Kivshar, and C. Denz, “Anisotropic photonic lattices and discrete solitons in photorefractive media,” Appl. Phys. B 86(3), 399–405 (2007). [CrossRef]
  29. T. J. Alexander, E. A. Ostrovskaya, and Y. S. Kivshar, “Self-trapped nonlinear matter waves in periodic potentials,” Phys. Rev. Lett. 96(4), 040401 (2006). [CrossRef] [PubMed]
  30. J. Xavier, P. Rose, J. Joseph, K. Singh, and C. Denz, reported independent work on optical induction of 3D lattices at the Topical Meeting on Photorefractive Materials, Effects, and Devices, Germany, June 2009.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited