OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 15 — Jul. 20, 2009
  • pp: 13168–13177

Doubly enhanced spontaneous emission due to increased photon density of states at photonic band edge frequencies

Keiji Kuroda, Tsutomu Sawada, Takashi Kuroda, Kenji Watanabe, and Kazuaki Sakoda  »View Author Affiliations


Optics Express, Vol. 17, Issue 15, pp. 13168-13177 (2009)
http://dx.doi.org/10.1364/OE.17.013168


View Full Text Article

Enhanced HTML    Acrobat PDF (1076 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Double enhancement of spontaneous emission due to increased photon density of states at the emission frequency and the small group velocity of light at the excitation frequency was clearly demonstrated by angle-resolved photoluminescence experiments for dielectric multilayers composed of Ta2O5 and SiO2 with oxygen vacancies as light emitters. Theoretical emission profiles given by the weak modulation approximation agreed well with the experimental observations.

© 2009 Optical Society of America

OCIS Codes
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: April 27, 2009
Revised Manuscript: July 12, 2009
Manuscript Accepted: July 13, 2009
Published: July 17, 2009

Citation
Keiji Kuroda, Tsutomu Sawada, Takashi Kuroda, Kenji Watanabe, and Kazuaki Sakoda, "Doubly enhanced spontaneous emission due to increased photon density of states at photonic band edge frequencies," Opt. Express 17, 13168-13177 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-15-13168


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Yablonovitch, "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  2. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486- 2489 (1987). [CrossRef] [PubMed]
  3. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 1995).
  4. K. Sakoda, Optical Properties of Photonic Crystals, 2nd edition (Springer, Berlin, 2004).
  5. K. Sakoda, "Optics of photonic crystals," Opt. Rev. 6, 381-392 (1999). [CrossRef]
  6. T. D. Happ, I. I. Tartakovskii, V. D. Kulakovskii, J. P. Reithmaier, M. Kamp, and A. Forchel, "Enhanced light emission of InxGa1−xAs quantum dots in a two-dimensional photonic-crystal defect microcavity," Phys. Rev. B 66, 041303 (2002). [CrossRef]
  7. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Depps, "Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity," Nature 432, 200-203 (2004). [CrossRef] [PubMed]
  8. A. Badolato, K. Hennessy,M. Atature, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, "Deterministic coupling of single quantum dots to single nanocavity modes," Science 308, 1158-1161 (2005). [CrossRef] [PubMed]
  9. T. Kuroda, N. Ikeda, T. Mano, Y. Sugimoto, T. Ochiai, K. Kuroda, S. Ohkouchi, N. Koguchi, K. Sakoda, and K. Asakawa, "Acceleration and suppression of photoemission of GaAs quantum dots embedded in photonic crystal microcavities," Appl. Phys. Lett. 93, 111103 (2008). [CrossRef]
  10. T. Lund-Hansen, S. Stobbe, B. Julsgaard, H. Thyrrestrup, T. S¨unner, M. Kamp, A. Forchel, and P. Lodahl, "Experimental realization of highly efficient broadband coupling of single quantum dots to a photonic crystal waveguide," Phys. Rev. Lett. 101, 113903 (2008). [CrossRef] [PubMed]
  11. G. Lecamp, P. Lalanne, and J. P. Hugonin, "Very large spontaneous-emission ® factors in photonic-crystal waveguides," Phys. Rev. Lett. 99, 023902 (2007). [CrossRef] [PubMed]
  12. V. S. C. Manga Rao and S. Hughes, "Single quantum-dot Purcell factor and ® factor in a photonic crystal waveguide," Phys. Rev. B 75, 205437 (2007). [CrossRef]
  13. P. Lodahl, A. F. van Driel, I. S. Nikolaev, A. Irman, K. Overgaag, D. Vanmaekelbergh, andW. L. Vos, "Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals," Nature 430, 654-657 (2004). [CrossRef] [PubMed]
  14. M. D. Tocci, M. Scalora, M. J. Bloemer, J. P. Dowling, and C. M. Bowden, "Measurement of spontaneousemission enhancement near the one-dimensional photonic band edge of semiconductor heterostructure," Phys. Rev. A 53, 2799-2803 (1996). [CrossRef] [PubMed]
  15. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, "The photonic band edge laser: A new approach to gain enhancement," J. Appl. Phys. 75, 1896-1899 (1994). [CrossRef]
  16. M. Scalora, J. P. Dowling, M. Tocci, M. J. Bloemer, C. M. Bowden, and J. W. Haus, "Dipole emission rates in one-dimensional photonic band-gap materials," Appl. Phys. B 60, S57-S61 (1995).
  17. P. Yeh, "Electromagnetic propagation in birefringent layered media," J. Opt. Soc. Am. 69, 742-756 (1979). [CrossRef]
  18. Y. Matsuhisa, Y. Huang, Y. Zhou, S.-T. Wu, Y. Takao, A. Fujii, and M. Ozaki, "Cholesteric liquid crystal laser in a dielectric mirror cavity upon band-edge excitation," Opt. Express 15, 616-622 (2007). [CrossRef] [PubMed]
  19. M. Astic, Ph. Delaye, R. Frey, G. Roosen, R. Andr’e, N. Belabas, I. Sagnes, and R. Raj, "Time resolved nonlinear spectroscopy at the band edge of 1D photonic crystals," J. Phys. D: Appl. Phys. 41, 224005 (2008). [CrossRef]
  20. Y. Sakurai, K. Nagasawa, H. Nishikawa, and Y. Ohki, "Characteristic red photoluminescence band in oxygendeficient silica glass," J. Appl. Phys. 86, 370-373 (1999). [CrossRef]
  21. M. Zhu, Z. Zhang, andW. Miao, "Intense photoluminescence from amorphous tantalum oxide films," Appl. Phys. Lett. 89, 021915 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited