OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 15 — Jul. 20, 2009
  • pp: 13193–13201

Linear response deviations during recording of diffraction gratings in photopolymers

M. Ortuño, C. Neipp, S. Gallego, and A. Beléndez  »View Author Affiliations

Optics Express, Vol. 17, Issue 15, pp. 13193-13201 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (258 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In a holographic recording is advisable that the diffraction efficiency increases linearly with the exposure in a wide zone of the curve of diffraction efficiency versus energetic exposure and the slope of the curve must be approximately constant before saturation in order to improve the energetic sensitivity and to get reproducibility in different recordings with the same kind of photopolymer, although to find examples of deviations to this behavior it is usual. The more important deviation experimentally observed in photopolymers with high thickness happen when the first maximum in the curve is lower than the second one. This effect is opposed to an overmodulation. We present a main hypothesis related to the dye concentration into the layer and with the molecular weight of the polymer chains generated in the polymerization process in order to explain this effect.

© 2009 OSA

OCIS Codes
(090.2900) Holography : Optical storage materials
(090.7330) Holography : Volume gratings

ToC Category:

Original Manuscript: May 8, 2009
Revised Manuscript: June 18, 2009
Manuscript Accepted: June 23, 2009
Published: July 17, 2009

M. Ortuño, C. Neipp, S. Gallego, and A. Beléndez, "Linear response deviations during recording of diffraction gratings in photopolymers," Opt. Express 17, 13193-13201 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. A. Lessard, and G. Manivannan, “Holographic Recording Materials: an overview,” in Holographic Materials, T. J. Trout, ed., Proc. SPIE 2405, 2–15 (1995).
  2. S. Martin, P. E. L. G. Leclere, Y. L. M. Renotte, V. Toal, and Y. F. Lion, “Characterization of an acrylamide-based dry photopolymer holographic recording material,” Opt. Eng. 33(12), 3942–3946 (1994). [CrossRef]
  3. M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76(8), 851–857 (2003). [CrossRef]
  4. M. Ortuño, E. Fernández, S. Gallego, A. Beléndez, and I. Pascual, “New photopolymer holographic recording material with sustainable design,” Opt. Express 15(19), 12425–12435 (2007). [CrossRef] [PubMed]
  5. M. Ortuño, S. Gallego, C. García, I. Pascual, C. Neipp, and A. Beléndez, “Holographic characteristics of an acrylamide/bisacrylamide photopolymer in 40-1000 μm thick layers,” Phys. Scr. T 118, 66–68 (2005). [CrossRef]
  6. M. Ortuño, S. Gallego, C. García, C. Neipp, and I. Pascual, “Holographic characteristics of a 1-mm-thick photopolymer to be used in holographic memories,” Appl. Opt. 42(35), 7008–7012 (2003). [CrossRef] [PubMed]
  7. H. Kogelnik, “Coupled Wave Theory for Thick Hologram Gratings,” Bell Syst. Tech. J. 48, 2909 (1969).
  8. S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. Kelly, and J. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,” Opt. Express 13(6), 1939–1947 (2005). [CrossRef] [PubMed]
  9. S. Gallego, M. Ortuño, C. Neipp, C. García, A. Beléndez, and I. Pascual, “Overmodulation effects in volume holograms recorded on photopolymers,” Opt. Commun. 215(4–6), 263–269 (2003). [CrossRef]
  10. C. Neipp, I. Pascual, and A. Beléndez, “Theoretical and experimental analysis of overmodulation effects in volume holograms recorded on BB-640 emulsions,” J. Opt. A, Pure Appl. Opt. 3(6), 504–513 (2001). [CrossRef]
  11. A. Márquez, C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, and I. Pascual, “Edge-enhanced imaging with polyvinyl alcohol/acrylamide photopolymer gratings,” Opt. Lett. 28(17), 1510–1512 (2003). [CrossRef] [PubMed]
  12. G. Odian, Principles of Polymerization, Wiley, New York (1991).
  13. J. V. Kelly, F. T. O’Neill, J. T. Sheridan, C. Neipp, S. Gallego, and M. Ortuño, “Holographic photopolymer materials: nonlocal polymerization driven diffusion under nonideal kinetic conditions,” J. Opt. Soc. Am. B 22(2), 407–416 (2005). [CrossRef]
  14. S. Gallego, M. Ortuño, C. Neipp, C. García, A. Beléndez, and I. Pascual, “Temporal evolution of the angular response of a holographic diffraction grating in PVA/acrylamide photopolymer,” Opt. Express 11(2), 181–190 (2003). [CrossRef] [PubMed]
  15. S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, E. Fernández, and I. Pascual, “3-dimensional characterization of thick grating formation in PVA/AA based photopolymer,” Opt. Express 14(12), 5121–5128 (2006). [CrossRef] [PubMed]
  16. C. García, A. Fimia, and I. Pascual, “Holographic behavior of a photopolymer at high thicknesses and high monomer concentrations: mechanism of photopolymerization,” Appl. Phys. B 72, 311–316 (2001).
  17. I. Katime, and J. R. Quintana, Scattering properties: light and X-rays in Comprehensive polymer science vol. 1, Pergamon press, Oxford, 103–132 (1989).
  18. B. Chu, Laser light scattering, Academic Press, New York (1974).
  19. A. Beléndez, A. Fimia, L. Carretero, and F. Mateos, “Self-induced phase gratings due to the inhomogeneous structure of acrylamide photopolymer systems used as holographic recording materials,” Appl. Phys. Lett. 67(26), 3856–3858 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited