OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 15 — Jul. 20, 2009
  • pp: 13216–13221

Tunable photonic microwave notch filter using SOA-based single-longitudinal mode, dual-wavelength laser

Kwanil Lee, Ju Han Lee, and Sang Bae Lee  »View Author Affiliations

Optics Express, Vol. 17, Issue 15, pp. 13216-13221 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (172 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A novel photonic microwave notch filter with capability of frequency tuning is proposed and experimentally demonstrated. The scheme is based on a fiber Bragg grating (FBG)-based, single longitudinal mode, wavelength-spacing tunable dual-wavelength fiber laser and a dispersive fiber delay line. By using a symmetrical S-bending technique along the FBGs, the wavelength spacing of the laser can be tuned, which enables the microwave notch frequency tuning. Experimental results show that the notch rejection of more than 30 dB and the flexible tunability of notch frequency can be readily achieved in the range of 1.2 ~6.7 GHz.

© 2009 OSA

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(350.4010) Other areas of optics : Microwaves

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: May 29, 2009
Revised Manuscript: July 2, 2009
Manuscript Accepted: July 2, 2009
Published: July 17, 2009

Kwanil Lee, Ju Han Lee, and Sang Bae Lee, "Tunable photonic microwave notch filter using SOA-based single-longitudinal mode, dual-wavelength laser," Opt. Express 17, 13216-13221 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Capmany, B. Ortega, and D. Pastor, “A Tutorial on Microwave Photonic Filters,” J. Lightwave Technol. 24(1), 201–229 (2006), http://www.opticsinfobase.org/JLT/abstract.cfm?URI=JLT-24-1-201 . [CrossRef]
  2. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007). [CrossRef]
  3. J. Capmany, D. Pastor, and B. Ortega, “New and flexible fiber-optic delay line filters using chirped Bragg gratings and laser arrays,” IEEE Trans. Microw. Theory Tech. 47(7), 1321–1326 (1999). [CrossRef]
  4. D. Pastor, J. Capmany, and B. Ortega, “Broadband tunable microwave transversal notch filter based on tunable uniform fiber Bragg gratings as slicing filters,” IEEE Photon. Technol. Lett. 13(7), 726–728 (2001). [CrossRef]
  5. D. Liu, N. Q. Ngo, G. Ning, P. Shum, and S. C. Tjin, “Tunable microwave photonic notch filter using a dual-wavelength fiber laser with phase modulation,” Opt. Commun. 266(1), 240–248 (2006). [CrossRef]
  6. H. Fu, H. Ou, K. Zhu, and S. He, “Tunable all-optical microwave notch filter with a negative tap based on a semiconductor optical amplifier and a dispersive medium,” Opt. Laser Technol. 41(3), 213–216 (2009). [CrossRef]
  7. J. Wang and J. Yao, “A tunable photonic microwave notch filter based on all optical mixing,” IEEE Photon. Technol. Lett. 18(2), 382–384 (2006). [CrossRef]
  8. J. Wang, F. Zeng, and J. P. Yao, “All optical microwave bandpass filters implemented in a radio-over-fiber-link,” IEEE Photon. Technol. Lett. 17(8), 1737–1739 (2005). [CrossRef]
  9. E. H. W. Chan and R. A. Minasian, “Sagnac-loop based equivalent negative tap photonic notch filter,” IEEE Photon. Technol. Lett. 17(8), 1740–1742 (2005). [CrossRef]
  10. H. Ou, H. Fu, D. Chen, and S. He, “A tunable and reconfigurable microwave photonic filter based on a Raman fiber laser,” Opt. Commun. 278(1), 48–51 (2007). [CrossRef]
  11. J. H. Lee and Y. M. Chang, “Detailed theoretical and experimental study on single passband, photonic microwave FIR filter using digital micromirror device and continuous-wave supercontinuum,” J. Lightwave Technol. 26(15), 2619–2628 (2008), http://www.opticsinfobase.org/JLT/abstract.cfm?URI=JLT-26-15-2619 . [CrossRef]
  12. W. J. Jeong, J. K. Bae, K. Lee, S. B. Lee, and J. H. Lee, “Tunable photonic microwave notch filter incorporating an S-bending based, linearly tunable, chirped fiber Bragg grating,” in Proc. Opto-Electronics and Communication Conference (Australian Optical Society, 2008), paper ThD-5.
  13. A. P. Foord, P. A. Davies, and P. A. Greenhalgh, “Synthesis of microwave and millimetre-wave filters using optical spectrum slicing,” Electron. Lett. 32(4), 390–391 (1996). [CrossRef]
  14. B. Vidal, M. A. Piqueras, and J. Marti, “Photonic microwave filter based on spectrum slicing with reconfiguration capability,” Electron. Lett. 41(23), 1286–1287 (2005). [CrossRef]
  15. S. Kim, J. Bae, K. Lee, S. H. Kim, J.-M. Jeong, and S. B. Lee, “Tunable dispersion slope compensator using two uniform fiber Bragg gratings mounted on S-shape plate,” Opt. Express 17(6), 4336–4341 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-6-4336 . [CrossRef] [PubMed]
  16. K. Lee, S. B. Lee, J. H. Lee, C. H. Kim, and Y.-G. Han, “Side-mode suppressed multiwavelength fiber laser and broadcast transmission,” in Proc. Optical Fiber Communication Conference (Optical Society of America, 2008), paper OThF1. http://www.opticsinfobase.org/abstract.cfm?URI=OFC-2008-OThF1 .
  17. T. J. Morgan, J. P. R. Lacey, and R. S. Tucker, “Widely tunable four-wave mixing in semiconductor optical amplifiers with constant conversion efficiency,” IEEE Photon. Technol. Lett. 10(10), 1401–1403 (1998). [CrossRef]
  18. J. Poëtte, S. Blin, G. Brochu, L. Bramerie, R. Slavik, J.-C. Simon, S. LaRochelle, and P. Besnard, “Relative intensity noise of multiwavelength fiber laser,” Electron. Lett. 40(12), 724–726 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited