OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 15 — Jul. 20, 2009
  • pp: 13222–13235

A detection instrument for enhanced-fluorescence and label-free imaging on photonic crystal surfaces

Ian D. Block, Patrick C. Mathias, Nikhil Ganesh, Sarah I. Jones, Brian R. Dorvel, Vikram Chaudhery, Lila O. Vodkin, Rashid Bashir, and Brian T. Cunningham  »View Author Affiliations


Optics Express, Vol. 17, Issue 15, pp. 13222-13235 (2009)
http://dx.doi.org/10.1364/OE.17.013222


View Full Text Article

Enhanced HTML    Acrobat PDF (563 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on the design and demonstration of an optical imaging system capable of exciting surface-bound fluorophores within the resonant evanescent electric field of a photonic crystal surface and gathering fluorescence emission that is directed toward the imaging objective by the photonic crystal. The system also has the ability to quantify shifts in the local resonance angle induced by the adsorption of biomolecules on the photonic crystal surface for label-free biomolecular imaging. With these two capabilities combined within a single detection system, we demonstrate label-free images self-registered to enhanced fluorescence images with 328x more sensitive fluorescence detection relative to a glass surface. This technique is applied to a DNA microarray where label-free quantification of immobilized capture DNA enables improved quality control and subsequent enhanced fluorescence detection of dye-tagged hybridized DNA yields 3x more genes to be detected versus commercially available microarray substrates.

© 2009 Optical Society of America

OCIS Codes
(180.2520) Microscopy : Fluorescence microscopy
(280.1415) Remote sensing and sensors : Biological sensing and sensors
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Detectors

History
Original Manuscript: June 5, 2009
Revised Manuscript: July 9, 2009
Manuscript Accepted: July 11, 2009
Published: July 17, 2009

Virtual Issues
Vol. 4, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Ian D. Block, Patrick C. Mathias, Nikhil Ganesh, Sarah I. Jones, Brian R. Dorvel, Vikram Chaudhery, Lila O. Vodkin, Rashid Bashir, and Brian T. Cunningham, "A detection instrument for enhanced-fluorescence and label-free imaging on photonic crystal surfaces," Opt. Express 17, 13222-13235 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-15-13222


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. H. Drexhage, "Influence of a dielectric interface on fluorescence decay time," J. Luminescence 1, 693-701 (1970). [CrossRef]
  2. J. R. Lakowicz, "Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission," Anal. Biochem. 337, 171-194 (2005). [CrossRef] [PubMed]
  3. Q1. C. D. Geddes and J. R. Lakowicz, "Metal-Enhanced Fluorescence," J. Fluorescence 12, 121-129 (2002). [CrossRef]
  4. B. Rothenhausler and W. Knoll, "Surface-plasmon microscopy," Nature 332, 615-617 (1988).
  5. A. W. Wark, H. J. Lee, and R. M. Corn, "Advanced Methods for SPR Biosensing," in Handbook of Surface Plasmon Resonance, R. B. M. Schasfoort and A. J. Tudos, eds. (RSC Publishing, London, 2008), pp. 251-280.
  6. Y. Arima, Y. Teramura, H. Takiguchi, K. Kawano, H. Kotera, and H. Iwata, "Surface plasmon resonance and surface plasmon field-enhanced fluorescence spectroscopy for sensitive detection of tumor markers," Meth. Molec. Bio. 503, 3-20 (2009). [CrossRef]
  7. P. Anger, P. Bharadwaj, and L. Novotny, "Enhancement and quenching of single-molecule fluorescence," Phys. Rev. Lett. 96, 113002 (2006). [CrossRef] [PubMed]
  8. T. Shtoyko, E. G. Matveeva, I.-F. Chang, Z. Gryczynski, E. Goldys, and I. Gryczynski, "Enhanced fluorescent immunoassays on silver factal-like structures," Anal. Chem. 80, 1962-1966 (2008). [CrossRef] [PubMed]
  9. T. M. Chinowsky, T. Mactutis, E. Fu, and P. Yager, "Optical and electronic design for a high-performance surface plasmon resonance imager," Proc. SPIE 5261, 173-182 (2004). [CrossRef]
  10. B. T. Cunningham and e. al, "Label-Free Assays on the BIND System," J. Biomolec. Screening 9, 481-490 (2004). [CrossRef]
  11. B. T. Cunningham and L. L. Laing, "Label-free detection of biomolecular interactions: Applications in proteomics and drug discovery," Expert Reviews in Proteomics 3, 271-281 (2006). [CrossRef]
  12. Q2. B. Lin, P. Li, and B. T. Cunningham, "A Label-Free Biosensor-Based Cell Attachment Assay for Characterization of Cell Surface Molecules," Sens. Actuators B 114, 559-564 (2006). [CrossRef]
  13. L. L. Chan, M. F. Pineda, J. Heeres, P. Hergenrother, and B. T. Cunningham, "General method for discovering inhibitors of protein-DNA interactions using photonic crystal biosensors," ACS Chem. Bio. 3, 437-448 (2008). [CrossRef]
  14. N. Ganesh, I. D. Block, and B. T. Cunningham, "Near ultraviolet-wavelength photonic-crystal biosensor with enhanced surface-to-bulk sensitivity ratio," Appl. Phys. Lett. 89, 023901 (2006). [CrossRef]
  15. N. Ganesh, A. Xiang, N. B. Beltran, D. W. Dobbs, and B. T. Cunningham, "Compact wavelength detection system incorporating a guided-mode resonance filter," Appl. Phys. Lett. 90, 081103-081106 (2007). [CrossRef]
  16. P. Li, B. Lin, J. Gerstenmaier, and B. T. Cunningham, "A new method for label-free imaging of biomolecular interactions," Sens. Actuators B, Chemical 99, 6-13 (2004). [CrossRef]
  17. Q3Q4. L. L. Chan, P. Y. Li, D. Puff, and B. T. Cunningham, "A Self-Referencing Method for Microplate Label-Free Photonic Crystal Biosensors," IEEE Sensors 6, 15510-11556 (2006). [CrossRef]
  18. C. J. Choi and B. T. Cunningham, "A 96-sell microplate incorporating a replica molded microfluidic network integrated with photonic crystal biosensors for high throughput kinetic biomolecular interaction analysis," Lab On A Chip 7, 550-556 (2007). [CrossRef] [PubMed]
  19. L. Chan, S. Gosangari, K. Watkin, and B. T. Cunningham, "A label-free photonic crystal biosensor imaging method for detection of cancer cell cytotoxicity and proliferation," Apoptosis 12, 1061-1068 (2007). [CrossRef] [PubMed]
  20. Q5. L. L. Chan, S. Gosangari, K. L. Watkin, and B. T. Cunningham, "Label-free imaging of cancer cells using photonic crystal biosensors and application to cytotoxicity screening of a natural compound library," Sens. Actuators B 132, 418-425 (2008). [CrossRef]
  21. D. Neuschaefer, W. Budach, C. Wanke, and S.-D. Chibout, "Evanescent resonator chips: a universal platform with superior sensitivity for fluorescence-based microarrays," Bio. Bioelectron. 18, 489-497 (2003). [CrossRef]
  22. N. Ganesh, P. C. Mathias, W. Zhang, and B. T. Cunningham, "Distance dependence of fluorescence enhancement from photonic crystal surfaces," Journal of Applied Physics 103, 083104 (2008). [CrossRef]
  23. P. C. Mathias, N. Ganesh, W. Zhang, and B. T. Cunningham, "Graded Wavelength One-Dimensional Photonic Crystal Reveals Spectral Characteristics of Enhanced Fluorescence," J. Appl. Phys. 103, 094320 (2008). [CrossRef]
  24. P. C. Mathias, N. Ganesh, and B. T. Cunningham, "Application of photonic crystal enhanced fluorescence to a cytokine immunoassay," Anal. Chem. 80, 9013-9020 (2008). [CrossRef]
  25. P. C. Mathias, N. Ganesh, L. L. Chan, and B. T. Cunningham, "Combined enhanced fluorescence and label-free biomolecular detection with a photonic crystal surface," Appl. Opt. 46, 2351-2360 (2007). [CrossRef] [PubMed]
  26. Q6. N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, "Enhanced fluorescence emission from quantum dots on a photonic crystal surface," Nature Nanotechnol. 2, 515-520 (2007). [CrossRef]
  27. P. C. Mathias, H.-Y. Wu, and B. T. Cunningham, "Employing two distinct photonic crystal resonances for improved fluorescence enhancement," Appl. Phys. Lett. (to be published). [PubMed]
  28. N. Ganesh, I. D. Block, P. C. Mathias, W. Zhang, V. Malyarchuk, and B. T. Cunningham, "Leaky-mode assisted fluorescence extraction: application to fluorescence enhancement biosensors," Opt. Express 16, 21626-21640 (2008). [CrossRef] [PubMed]
  29. W. Zhang, I. Shmulevich, and J. Astola, Microarray Quality Control (Wiley, Hoboken, 2004). [CrossRef]
  30. Q7. B. T. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, "A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions," Sens. Actuators B 85, 219-226 (2002). [CrossRef]
  31. Q8. I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, "A sensitivity model for predicting photonic cyrstal biosensor performance," IEEE Sensors 8, 274-280 (2008). [CrossRef]
  32. B. Dorvel, B. R. Jr., I. D. Block, P. C. Mathias, S. E. Clare, D. E. Bergstrom, B. T. Cunningham, and R. Bashir, "Vapor phase deposition of monofunctional alkoxysilanes for sub-nanometer level biointerfacing on oxide surfaces," Adv. Functional Mater. (under review).
  33. L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, "Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films," Langmuir 14, 5636-5648 (1998). [CrossRef]
  34. J. S. Shumaker-Parry and C. T. Campbell, "Quantitative methods for spatially resolved adsorption/desorption measurements in real time by surface plasmon resonance microscopy," Anal. Chem. 76, 907-917 (2004). [CrossRef] [PubMed]
  35. X. Zhu, J. P. Landry, Y.-S. Sun, J. P. Gregg, K. S. Lam, and X. Guo, "Oblique-incidence reflectivity difference microscope for label-free high-throughput detection of biochemical reactions in a microarray format," Appl. Opt. 46, 1890-1895 (2007). [CrossRef] [PubMed]
  36. E. Ozkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlu, "Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications," PNAS 105, 7988-7992 (2008). [CrossRef] [PubMed]
  37. E. Fu, T. Chinowsky, J. Foley, J. Weinstein, and P. Yager, "Characterization of a wavelength-tunable surface plasmon resonance microscope," Rev. Scie. Instruments 75, 2300-2304 (2004). [CrossRef]
  38. Y.-J. Hung, I. I. Smolyaninov, C. C. Davis, and H.-C. Wu, "Fluorescence enhancement by surface gratings," Opt. Express 14, 10825-10830 (2006). [CrossRef] [PubMed]
  39. C. R. Sabanayagam and J. R. Lakowicz, "Increasing the sensitivity of DNA microarrays by metal-enhanced fluorescence using surface-bound silver nanoparticles," Nucleic Acids Research 35, e13 (2007). [CrossRef]
  40. E. L. Moal, E. Fort, S. Leveque-Fort, F. P. Cordelieres, M.-P. Fontaine-Aupart, and C. Ricolleau, "Enhanced fluorescence cell imaging with metal-coated slides," Biophys. J. 92, 2150-2161 (2007). [CrossRef]
  41. L. Shi, "The Microarray Quality Control (MAQD) project shows inter- and intraplatform reproducibility of gene expression measurements," Nature Biotechnol. 24, 1151-1161 (2006). [CrossRef]
  42. A. W. Peterson, R. J. Heaton, and R. M. Georgiadis, "The effect of surface probe density on DNA hybridization," Nucleic Acids Research 29, 5163-5168 (2001). [CrossRef]
  43. D. S. Dandy, P. Wu, and D. W. Grainger, "Array feature size influences nucleic acid surface capture in DNA microarrays," PNAS 104, 8223-8228 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited