OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 16 — Aug. 3, 2009
  • pp: 13309–13314

Tunable polarization beam splitting based on a symmetrical metal-cladding waveguide structure

Yi Wang, Zhuangqi Cao, Honggen Li, Qishun Shen, Wen Yuan, and Pingping Xiao  »View Author Affiliations

Optics Express, Vol. 17, Issue 16, pp. 13309-13314 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (230 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Electrical tuning of polarization beam splitting is demonstrated in the structure of symmetrical metal-cladding waveguide by introducing optically nonlinear material into both the coupling prism and the guiding layer. Due to the anisotropy of the coupling material, different excitation conditions for TE and TM modes are obtained, which results in polarization-dependent reflections and transmissions. And the splitting effect of the two orthogonally polarized beams can be manipulated through an electrical modulation of the guiding layer properties.

© 2009 Optical Society of America

OCIS Codes
(230.1360) Optical devices : Beam splitters
(230.5440) Optical devices : Polarization-selective devices
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Optical Devices

Original Manuscript: May 5, 2009
Revised Manuscript: June 29, 2009
Manuscript Accepted: June 29, 2009
Published: July 20, 2009

Yi Wang, Zhuangqi Cao, Honggen Li, Qishun Shen, Wen Yuan, and Pingping Xiao, "Tunable polarization beam splitting based on a symmetrical metal-cladding waveguide structure," Opt. Express 17, 13309-13314 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. L. B. Zhou, and W. Liu, "Broadband polarizing beam splitter with an embedded metal-wire nanograting," Opt. Lett. 30, 1434-1436 (2005). [CrossRef] [PubMed]
  2. C. Y. Tai, S. H. Chang, and T. C. Chiu, "Design and analysis of an ultra-compact and ultra-wideband polarization beam splitter based on coupled plasmonic waveguide arrays," IEEE Photon. Technol. Lett. 19, 1448-1450 (2007). [CrossRef]
  3. J. B. Feng, and Z. P. Zhou, "Polarization beam splitter using a binary blazed grating coupler," Opt. Lett. 32, 1662-1664 (2007). [CrossRef] [PubMed]
  4. H. Luo, Z. Ren, W. Shu, and F. Li, "Construct a polarizing beam splitter by an anisotropic metamaterial slab," Appl. Phys. B-Lasers and Optics 87, 283-287 (2007). [CrossRef]
  5. J. M. Zhao, Y. Chen, and Y. J. Feng, "Polarization beam splitting through an anisotropic metamaterial slab realized by a layered metal-dielectric structure," Appl. Phys. Lett. 92, 071114 (2008). [CrossRef]
  6. S. Y. Kim, G. P. Nordin, J. B. Cai, and J. H. Jiang, "Ultracompact high-efficiency polarizing beam splitter with a hybrid photonic crystal and conventional waveguide structure," Opt. Lett. 28, 2384-2386 (2003). [CrossRef] [PubMed]
  7. E. Schonbrun, Q. Wu,W. Park, T. Yamashita, and C. J. Summers, "Polarization beam splitter based on a photonic crystal heterostructure," Opt. Lett. 31, 3104-3106 (2006). [CrossRef] [PubMed]
  8. L. J. Wu, M. Mazilu, J. F. Gallet, T. F. Krauss, A. Jugessur, and R. M. De La Rue, "Planar photonic crystal polarization splitter," Opt. Lett. 29, 1620-1622 (2004). [CrossRef] [PubMed]
  9. X. Y. Ao, and S. L. He, "Polarization beam splitters based on a two-dimensional photonic crystal of negative refraction," Opt. Lett. 30, 2152-2154 (2005). [CrossRef] [PubMed]
  10. V. Mocella, P. Dardano, L. Moretti, and I. Rendina, "A polarizing beam splitter using negative refraction of photonic crystals," Opt. Express 13, 7699-7707 (2005). [CrossRef] [PubMed]
  11. H. F. Lu, Z. Q. Cao, H. G. Li, and Q. S. Shen, "Study of ultrahigh-order modes in a symmetrical metal-cladding optical waveguide," Appl. Phys. Lett. 85, 4579-4581 (2004). [CrossRef]
  12. H. A. Macleod, Thin-film optical filters (Adam Hilger, Bristol, 1986). [CrossRef]
  13. G. D. Boyd, W. L. Bond, and H. L. Carter, "Refractive index as a function of temperature in LiNbO3," J Appl. Phys. 38, 1941-1943 (1967). [CrossRef]
  14. L. R. Dalton, "Rational design of organic electro-optic materials," J Phys-Condens Mat 15, R897-R934 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited