OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 16 — Aug. 3, 2009
  • pp: 13326–13334

Continuous high speed coherent one-way quantum key distribution

Damien Stucki, Claudio Barreiro, Sylvain Fasel, Jean-Daniel Gautier, Olivier Gay, Nicolas Gisin, Rob Thew, Yann Thoma, Patrick Trinkler, Fabien Vannel, and Hugo Zbinden  »View Author Affiliations

Optics Express, Vol. 17, Issue 16, pp. 13326-13334 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (810 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Quantum key distribution (QKD) is the first commercial quantum technology operating at the level of single quanta and is a leading light for quantum-enabled photonic technologies. However, controlling these quantum optical systems in real world environments presents significant challenges. For the first time, we have brought together three key concepts for future QKD systems: a simple high-speed protocol; high performance detection; and integration both, at the component level and for standard fibre network connectivity. The QKD system is capable of continuous and autonomous operation, generating secret keys in real time. Laboratory and field tests were performed and comparisons made with robust InGaAs avalanche photodiodes and superconducting detectors. We report the first real world implementation of a fully functional QKD system over a 43dB-loss (150km) transmission line in the Swisscom fibre optic network where we obtained average real-time distribution rates over 3 hours of 2.5bps.

© 2009 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(270.0270) Quantum optics : Quantum optics
(270.5570) Quantum optics : Quantum detectors
(270.5565) Quantum optics : Quantum communications
(270.5568) Quantum optics : Quantum cryptography
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

Original Manuscript: May 8, 2009
Revised Manuscript: July 8, 2009
Manuscript Accepted: July 13, 2009
Published: July 20, 2009

Damien Stucki, Claudio Barreiro, Sylvain Fasel, Jean-Daniel Gautier, Olivier Gay, Nicolas Gisin, Rob Thew, Yann Thoma, Patrick Trinkler, Fabien Vannel, and Hugo Zbinden, "Continuous high speed coherent one-way quantum key distribution," Opt. Express 17, 13326-13334 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, "Quantum cryptography," Rev. Mod. Phys. 74,145-195 (2002). [CrossRef]
  2. Commercial QKD company web sites: www.idquantique.com, www.magiqtech.com, www.smartquantum.com.
  3. D. Stucki, N. Gisin, O. Guinnard, G. Ribordy, and H. Zbinden, "Quantum key distribution over 67 km with a plug&play system," New J. Phys. 4,41.1-41.8 (2002). [CrossRef]
  4. Z. L. Yuan, and A. J. Shields, "Continuous operation of a one-way quantum key distribution system over installed telecom fibre," Opt. Expr. 13,660-665 (2005). [CrossRef]
  5. R. T. Thew, S. Tanzilli, L. Krainer, S. C. Zeller, A. Rochas, I. Rech, S. Cova, H. Zbinden, and N. Gisin, "Low jitter up-conversion detectors for telecom wavelength GHz QKD," New. J. Phys 8,32 (2006). [CrossRef]
  6. E. Diamanti, H. Takesue, C. Langrock, M. M. Fejer, and Y. Yamamoto, "100 km differential phase shift quantum key distribution with low jitter up-conversion detectors," Opt. Expr. 14,13073-13082 (2006). [CrossRef]
  7. Z. L. Yuan, A. R. Dixon, J. F. Dynes, A. W. Sharpe, and A. J. Shields, "Gigahertz quantum key distribution with InGaAs avalanche photodiodes," Appl. Phys. Lett. 92,201104 (2008). [CrossRef]
  8. H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, "Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors," Nature Phot. 1,343-348 (2007). [CrossRef]
  9. K. Inoue, E. Waks, and Y. Yamamoto, "Differential phase shift quantum key distribution," Phys. Rev. Lett. 89,037902 (2002). [CrossRef] [PubMed]
  10. V. Scarani, A. Acín, G. Ribordy, and N. Gisin, "Quantum Cryptography Protocols Robust against Photon Number Splitting Attacks for Weak Laser Pulse Implementations," Phys. Rev. Lett. 92,057901 (2004). [CrossRef] [PubMed]
  11. M. Koashi, "Unconditional Security of Coherent-State Quantum Key Distribution with a Strong Phase-Reference Pulse," Phys. Rev. Lett. 93,120501 (2004). [CrossRef] [PubMed]
  12. D. Stucki, N. Brunner, N. Gisin, V. Scarani, and H. Zbinden, "Fast and simple one-way quantum key distribution," Appl. Phys. Lett. 87,194108 (2005). [CrossRef]
  13. C. Branciard, N. Gisin, N. Lütkenhaus, and V. Scarani, "Zero-error attacks and detection statistics in the coherent one-way protocol for quantum cryptography," Quant. Inf. Comp. 7,639-664 (2007).
  14. W. Y. Hwang, "Quantum Key Distribution with High Loss: Toward Global Secure Communication," Phys. Rev. Lett. 91,057901 (2003). [CrossRef] [PubMed]
  15. X.-B. Wang, "Beating the Photon-Number-Splitting Attack in Practical Quantum Cryptography," Phys. Rev. Lett. 94,230503 (2005). [CrossRef] [PubMed]
  16. H. Lo, X. Ma, and K. Chen, "Decoy State Quantum Key Distribution," Phys. Rev. Lett. 94,230504 (2005). [CrossRef] [PubMed]
  17. Website for BBN Technologies: www.bbn.com.
  18. Website for the EU project SECOQC: www.secoqc.net.
  19. Although there are still no complete formal security proofs for finite keys, initial efforts in this direction suggest the need for large blocks of data to ensure security, V. Scarani, R. Renner, "Quantum Cryptography with Finite Resources: Unconditional Security Bound for Discrete-Variable Protocols with One-Way Postprocessing," Phys Rev. Lett. 100,200501 (2008). [CrossRef] [PubMed]
  20. C. H. Bennett and G. Brassard, "Quantum Cryptography: Public Key Distribution and Coin Tossing," in Proceedings of IEEE International Conference on Computers, Systems and Signal Processing (Institute of Electrical and Electronics Engineers, Bangalore, 1984), pp. 175-179.
  21. C. H. Bennett, "Quantum cryptography using any two nonorthogonal states," Phys. Rev. Lett. 68,3121 (1992). [CrossRef] [PubMed]
  22. N. Gisin, G. Ribordy, H. Zbinden, D. Stucki, N. Brunner, and V. Scarani, "Towards practical and fast Quantum Cryptography," quant-ph/0411022 (2004).
  23. C. Branciard, N. Gisin, and V. Scarani, "Upper bounds for the security of two distributed-phase reference protocols of quantum cryptography," New J. Phys. 10,013031 (2008). [CrossRef]
  24. U. Atsushi, A. Kazuya, I. Masaki, H. Kunihito, N. Sunao, S. Hiroyuki, O. Isao, K. Takayuki, S. Masaru, Y. Shigeru, Y. Kazuyuki, and D. Peter, "Fast physical random bit generation with chaotic semiconductor lasers," Nature Phot. 2,728-732 (2008). [CrossRef]
  25. R. T. Thew, D. Stucki, J.-D. Gautier, H. Zbinden, and A. Rochas, "Free-running InGaAs/InP avalanche photodiode with active quenching for single photon counting at telecom wavelengths," Appl. Phys. Lett. 91,201114 (2007). [CrossRef]
  26. R. T. Thew, H. Zbinden, and N. Gisin, "Tunable upconversion photon detector," App. Phys. Lett. 93,071104 (2008). [CrossRef]
  27. A. Korneev, Y. Vachtomin, O. Minaeva, A. Divochiy, K. Smirnov, O. Okunev, G. Gol'tsman, C. Zinoni, N. Chauvin, L. Balet, F. Marsili, D. Bitauld, B. Alloing, L. H. Li, A. Fiore, L. Lunghi, A. Gerardino, M. Halder, C. Jorel, and H. Zbinden, "Single-Photon Detection System for Quantum Optics Applications," IEEE J. Sel. Top. Quantum Electron. 13,944-951 (2007). [CrossRef]
  28. Website for the EU project Sinphonia: www.sinphonia.org.
  29. G. Brassard and L. Salvail, "Secret-key reconciliation by public discussion," in Advances in Cryptology - EUROCRYPT `93. Workshop on the Theory and Application of Cryptographic Techniques - Proceedings (Springer-Verlag, Berlin, 1994), pp. 410-423.
  30. M. N. Wegman, L. Carter, "New Hash Functions and Their Use in Authentication and Set Equality," J. Comput. Syst. Sci. 22,265-279 (1981). [CrossRef]
  31. L. Carter, M. N. Wegman, "Universal Classes of Hash Functions," J. Comput. Syst. Sci. 18,143-154 (1979). [CrossRef]
  32. J. Zhang, R. T. Thew, J.-D Gautier, N. Gisin, and H. Zbinden, "Comprehensive Characterization of InGaAs/InP Avalanche Photodiodes at 1550 nm with an Active Quenching ASIC," IEEE J. Quantum Electron. (to be published), arXiv/0812.2840.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited