OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 16 — Aug. 3, 2009
  • pp: 13354–13364

Deep tissue multiphoton microscopy using longer wavelength excitation

Demirhan Kobat, Michael E. Durst, Nozomi Nishimura, Angela W. Wong, Chris B. Schaffer, and Chris Xu  »View Author Affiliations

Optics Express, Vol. 17, Issue 16, pp. 13354-13364 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (614 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We compare the maximal two-photon fluorescence microscopy (TPM) imaging depth achieved with 775-nm excitation to that achieved with 1280-nm excitation through in vivo and ex vivo TPM of fluorescently-labeled blood vessels in mouse brain. We achieved high contrast imaging of blood vessels at approximately twice the depth with 1280-nm excitation as with 775-nm excitation. An imaging depth of 1 mm can be achieved in in vivo imaging of adult mouse brains at 1280 nm with approximately 1-nJ pulse energy at the sample surface. Blood flow speed measurements at a depth of 900 µm are performed.

© 2009 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: May 26, 2009
Revised Manuscript: July 2, 2009
Manuscript Accepted: July 6, 2009
Published: July 20, 2009

Virtual Issues
Vol. 4, Iss. 10 Virtual Journal for Biomedical Optics

Demirhan Kobat, Michael E. Durst, Nozomi Nishimura, Angela W. Wong, Chris B. Schaffer, and Chris Xu, "Deep tissue multiphoton microscopy using longer wavelength excitation," Opt. Express 17, 13354-13364 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Kleinfeld, P.P. Mitra, F. Helmchen, and W. Denk, "Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex," Proc. Natl. Acad. Sci. USA 95, 15741-15746 (1998). [CrossRef] [PubMed]
  2. K. Svoboda, F. Helmchen, W. Denk, and D. W. Tank, "Spread of dendritic excitation in layer 2/3 pyramidal neurons in rat barrel cortex in vivo," Nat. Neuroscience 2, 65-73 (1999). [CrossRef]
  3. F. Helmchen, K. Svoboda, W. Denk, and D. W. Tank, "In-vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons," Nat. Neuroscience 2, 989-996 (1999). [CrossRef]
  4. F. Helmchen, and W. Denk, "Deep tissue two-photon microscopy," Nat. Methods 2, 932-940 (2005). [CrossRef] [PubMed]
  5. P. Theer, M.T. Hasan, and W. Denk, "Two-photon imaging to a depth of 1000 µm in living brains by use of a Ti:Al2O3 regenerative amplifier," Opt. Lett. 28, 1022-1024 (2003). [CrossRef] [PubMed]
  6. M. Müller, J. Squier, R. Wolleschensky, U. Simon, and G. Brakenhoff, "Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives," J. Microsc. 191, 141-150 (1998). [CrossRef] [PubMed]
  7. S. Sakadzić, U. Demirbas, T.R. Mempel, A. Moore, S. Ruvinskaya, D.A. Boas, A. Sennaroglu, F.X. Kaertner, and J.G. Fujimoto, "Multi-photon microscopy with a low-cost and highly efficient Cr:licaf laser," Opt. Express 16, 20848-20863 (2008). [CrossRef] [PubMed]
  8. P. Theer, and W. Denk, "On the fundamental imaging-depth limit in two-photon microscopy," J. Opt. Soc. Am. A 23, 3139-3149 (2006). [CrossRef]
  9. A.N. Yaroslavsky, P.C. Schulze, I.V. Yaroslavsky, R. Schober, F. Ulrich, and H. Schwarzmaier, "Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range," Phys. Med. Biol. 47, 2059-2073 (2002). [CrossRef] [PubMed]
  10. W. Cheong, S. Prahl, and A. Welch, "A review of the optical properties of biological tissues," IEEE J. Quantum Electron. 26, 2166-2185 (1990). [CrossRef]
  11. I. Chen, S. Chu, C. Sun, P. Cheng, and B. Lin, "Wavelength dependent damage in biological multi-photon confocal microscopy: a micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources," Opt. Quantum Electron. 34, 1251-1266 (2002). [CrossRef]
  12. J.M. Schmitt, A. Knuttel, M. Yadlowsky, and M.A. Eckhaus, "Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering," Phys. Med. Biol. 39, 1705-1720 (1994). [CrossRef] [PubMed]
  13. B.E. Bouma, G.J. Tearney, I.P. Bilinsky, B. Golubovic, and J.G. Fujimoto, "Self-phase-modulated kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography," Opt. Lett. 21, 1839-1841 (1996). [CrossRef] [PubMed]
  14. S. Chu, I. Chen, T. Liu, P.C. Chen, C. Sun, and B. Lin, "Multimodal nonlinear spectral microscopy based on a femtosecond Cr:forsterite laser," Opt. Lett. 26, 1909-1911 (2001). [CrossRef]
  15. S. Chu, S. Chen, T. Tsai, T. Liu, C. Lin, H. Tsai, and C. Sun, "In vivo developmental biology study using noninvasive multi-harmonic generation microscopy," Opt. Express 11, 3093-3099 (2003). [CrossRef] [PubMed]
  16. T. Tsai, C. Lin, H. Tsai, S. Chen, S. Tai, K. Lin, and C. Sun, "Biomolecular imaging based on far-red fluorescent protein with a high two-photon excitation action cross section," Opt. Lett. 31, 930-932 (2006). [CrossRef] [PubMed]
  17. M. Balu, T. Baldacchini, J. Carter, T.B. Krasieva, R. Zadoyan, and B.J. Tromberg, "Effect of excitation wavelength on penetration depth in nonlinear optical microscopy of turbid media," J. Biomed. Opt. 14, 010508-3 (2009). [CrossRef] [PubMed]
  18. T. Yasui, Y. Takahashi, M. Ito, S. Fukushima, and T. Araki, "Ex vivo and in vivo second-harmonic-generation imaging of dermal collagen fiber in skin: comparison of imaging characteristics between mode-locked Cr:forsterite and Ti:sapphire lasers," Appl. Opt. 48, D88-D95 (2009). [CrossRef] [PubMed]
  19. L. Kou, D. Labrie, and P. Chylek, "Refractive indices of water and ice in the 0.65- to 2.5-µm spectral range," Appl. Opt. 32, 3531-3540 (1993). [CrossRef] [PubMed]
  20. Q. Nguyen, P.S. Tsai, and D. Kleinfeld, "Mpscope: a versatile software suite for multiphoton microscopy," J. Neurosci. Methods 156, 351-359 (2006). [CrossRef] [PubMed]
  21. A.Y. Shih, B. Friedman, P.J. Drew, P.S. Tsai, P.D. Lyden, and D. Kleinfeld, "Active dilation of penetrating arterioles restores red blood cell flux to penumbral neocortex after focal stroke," J. Cereb. Blood. Flow. Metab. 29, 738-751 (2009). [CrossRef] [PubMed]
  22. D. Kleinfeld, and W. Denk, "Two-photon imaging of neocortical microcirculation," in Imaging Neurons: A Laboratory Manual, R. Yuste, F. Lanni, A. Konnerth, eds. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor,2000) 23.1-23.15.
  23. C.B. Schaffer, B. Friedman, N. Nishimura, L.F. Schroeder, P.S. Tsai, F.F. Ebner, P.D. Lyden, and D. Kleinfeld, "Two-photon imaging of cortical surface microvessels reveals a robust redistribution in blood flow after vascular occlusion," PLoS Biology 4, e22 EP - (2006). [CrossRef]
  24. M. Friebel, J. Helfmann, U. Netz, and M. Meinke, "Influence of oxygen saturation on the optical scattering properties of human red blood cells in the spectral range 250 to 2000 nm," J. Biomed. Opt. 14, 034001-6 (2009). [CrossRef] [PubMed]
  25. W.R. Zipfel, R.M. Williams, R. Christie, A.Y. Nikitin, B.T. Hyman, and W.W. Webb, "Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation," Proc. Natl. Acad. Sci. USA 100, 7075-7080 (2003). [CrossRef] [PubMed]
  26. C. Xu, and W.W. Webb, "Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm," J. Opt. Soc. Am. B 13, 481-491 (1996). [CrossRef]
  27. Y. Liu, D.K. Cheng, G.J. Sonek, M.W. Berns, C.F. Chapman, and B.J. Tromberg, "Evidence for localized cell heating induced by infrared optical tweezers.," Biophys J. 68, 2137-2144 (1995). [CrossRef] [PubMed]
  28. A. Schonle, and S.W. Hell, "Heating by absorption in the focus of an objective lens," Opt. Lett. 23, 325-327 (1998). [CrossRef]
  29. W. Denk, D.W. Piston, and W.W. Webb, "Multi-photon molecular excitation in laser-scanning microscopy," in Handbook of Biological Confocal Microscopy, 3.ed., J.B. Pawlay, ed. (Springer Science, New York, NY, 2006) 535-549. [CrossRef]
  30. M. Müller, J. Squier, K.R. Wilson, and G.J. Brakenhoff, "3d microscopy of transparent objects using third-harmonic generation," J. Microsc. 191, 266-274 (1998). [CrossRef] [PubMed]
  31. J.H. Lee, J. van Howe, C. Xu, S. Ramachandran, S. Ghalmi, and M.F. Yan, "Generation of femtosecond pulses at 1350 nm by Cerenkov radiation in higher-order-mode fiber," Opt. Lett. 32, 1053-1055 (2007). [CrossRef] [PubMed]
  32. J. van Howe, J.H. Lee, S. Zhou, F. Wise, C. Xu, S. Ramachandran, S. Ghalmi, and M.F. Yan, "Demonstration of soliton self-frequency shift below 1300 nm in higher-order mode, solid silica-based fiber," Opt. Lett. 32, 340-342 (2007). [CrossRef] [PubMed]
  33. A. Chong, W. H. Renninger, and F. W. Wise, "All-normal-dispersion femtosecond fiber laser with pulse energy above 20 nJ," Opt. Lett. 32, 2408-2410 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited