OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 16 — Aug. 3, 2009
  • pp: 13373–13380

Tunable two-dimensional left-handed material consisting of ferrite rods and metallic wires

Hongjie Zhao, Ji Zhou, Lei Kang, and Qian Zhao  »View Author Affiliations

Optics Express, Vol. 17, Issue 16, pp. 13373-13380 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1212 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a magnetically tunable and two-dimensional (2D) left-handed material (LHM) consisting of an array of ferrite rods and metallic wires by experiments and simulations. It shows that the ferrite rod has a 2D isotropic negative permeability. By combining the ferrite rods with metallic wires, we observe experimentally a 2D LH passband that can be tuned dynamically, continuously and reversibly by an external magnetic field within in a wide frequency range with a response of 3.5 GHz/kOe. Retrieved effective parameters based on simulated scattering parameters show that operating frequency and value of negative refraction index can be conveniently tuned by changing the external magnetic field.

© 2009 OSA

OCIS Codes
(000.0000) General : General

ToC Category:

Original Manuscript: June 8, 2009
Revised Manuscript: July 12, 2009
Manuscript Accepted: July 17, 2009
Published: July 20, 2009

Hongjie Zhao, Ji Zhou, Lei Kang, and Qian Zhao, "Tunable two-dimensional left-handed material consisting of ferrite rods and metallic wires," Opt. Express 17, 13373-13380 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of permittivity and permeability,” Sov. Phys. Usp. 10, 509 (1968). [CrossRef]
  2. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996). [CrossRef] [PubMed]
  3. J. B. Pendry, A. J. Holden, D. J. Robins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory Tech. 47(11), 2075–2084 (1999). [CrossRef]
  4. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2002). [CrossRef]
  5. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  6. P. Gay-Balmaz and O. J. F. Martin, “Efficient isotropic magnetic resonators,” Appl. Phys. Lett. 81(5), 939 (2002). [CrossRef]
  7. H. Chen and L. Bae-Ian Wu, “Ran, T. M. Grzegorczyk, and J. A. Kong, “Controllable left-handed metamaterial and its application to a steerable antenna,” Appl. Phys. Lett. 89, 053509 (2006). [CrossRef]
  8. K. Aydin and E. Ozbay, “Capacitor-loaded split ring resonators as tunable metamaterial components,” J. Appl. Phys. 101(2), 024911 (2007). [CrossRef]
  9. A. Degiron, J. J. Mock, and D. R. Smith, “Modulating and tuning the response of metamaterials at the unit cell level,” Opt. Express 15(3), 1115–1127 (2007). [CrossRef] [PubMed]
  10. Q. Zhao, L. Kang, B. Du, B. Li, J. Zhou, H. Tang, X. Liang, and B. Zhang, “Electrically tunable negative permeability metamaterials based on nematic liquid crystals,” Appl. Phys. Lett. 90(1), 011112 (2007). [CrossRef]
  11. L. Kang, Q. Zhao, H. J. Zhao, and J. Zhou, “Magnetically tunable negative permeability metamaterial composed by split ring resonators and ferrite rods,” Opt. Express 16(12), 8825–8834 (2008). [CrossRef] [PubMed]
  12. L. Kang, Q. Zhao, H. J. Zhao, and J. Zhou, “Ferrite-based magnetically tunable left-handed metamaterial composed of SRRs and wires,” Opt. Express 16(22), 17269–17275 (2008). [CrossRef] [PubMed]
  13. G. Dewar, “Candidates for μ<0, ε<0 nanostructures,” Int. J. Mod. Phys. B 15(24 & 25), 3258 (2001). [CrossRef]
  14. A. Pimenov, A. Loidl, P. Przyslupski, and B. Dabrowski, “Negative refraction in ferromagnet-superconductor superlattices,” Phys. Rev. Lett. 95(24), 247009 (2005). [CrossRef] [PubMed]
  15. Y. He, P. He, S. D. Yoon, P. V. Parimi, F. J. Rachford, V. G. Harris, and C. Vittoria, “Tunable negative index metamaterial using yttrium iron garnet,” J. Magn. Magn. Mater. 313(1), 187–191 (2007). [CrossRef]
  16. H. J. Zhao, J. Zhou, Q. Zhao, B. Li, L. Kang, and Y. Bai, “Magnetotunable left-handed material consisting of yttrium iron garnet slab and metallic wires,” Appl. Phys. Lett. 91(13), 131107 (2007). [CrossRef]
  17. F. J. Rachford, D. N. Armstead, V. G. Harris, and C. Vittoria, “Simulations of ferrite-dielectric-wire composite negative index materials,” Phys. Rev. Lett. 99(5), 057202 (2007). [CrossRef] [PubMed]
  18. S. T. Chui and L. Hu, “Theoretical investigation on the possibility of preparing left-handed materials in metallic magnetic granular composites,” Phys. Rev. B 65(14), 144407 (2002). [CrossRef]
  19. B. Lax, and K. J. Button, Microwave ferrites and ferrimagnetics, (McGraw-Hill, New York, 1962).
  20. N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, E. Ozbay, and C. M. Soukoulis, “Left- and right-handed transmission peaks near the magnetic resonance frequency in composite metamaterials,” Phys. Rev. B 70(20), 201101 (2004). [CrossRef]
  21. K. Aydin, K. Guven, M. Kafesaki, L. Zhang, C. M. Soukoulis, and E. Ozbay, “Experimental observation of true left-handed transmission peaks in metamaterials,” Opt. Lett. 29(22), 2623–2625 (2004). [CrossRef] [PubMed]
  22. D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(33 Pt 2B), 036617 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited