OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 16 — Aug. 3, 2009
  • pp: 13425–13428

Design of High Efficiency Multi-GHz SiGe HBT Electro-Optic Modulator

Shengling Deng, Z. Rena Huang, and J. F. McDonald  »View Author Affiliations

Optics Express, Vol. 17, Issue 16, pp. 13425-13428 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (768 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We design and theoretically analyze a heterojunction bipolar transistor (HBT) electro-optic (EO) modulator with a composition graded SiGe base. The waveguide has a large cross-section of 1µm for ease of fiber alignment. At a base-emitter bias of VBE =2.5V, a π-phase shift requires 74.5µm interaction length for TM polarization at λ=1.55µm. The total optical attenuation is 3.9dB to achieve a π-phase shift in this condition. This device is expected to operate at a switching speed of 2.4GHz.

© 2009 OSA

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.2090) Optical devices : Electro-optical devices
(130.4110) Integrated optics : Modulators

ToC Category:
Integrated Optics

Original Manuscript: April 29, 2009
Revised Manuscript: July 10, 2009
Manuscript Accepted: July 13, 2009
Published: July 20, 2009

Shengling Deng, Z. Rena Huang, and J. F. McDonald, "Design of High Efficiency Multi-GHz SiGe HBT Electro-Optic Modulator," Opt. Express 17, 13425-13428 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller, and J. S. Harris, “Strong quantum-confined Stark effect in germanium quantum-well structures on silicon,” Nature 437(7063), 1334–1336 (2005). [CrossRef] [PubMed]
  2. R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, and A. Bjarklev, “Strained silicon as a new electro-optic material,” Nature 441(7090), 199–202 (2006). [CrossRef] [PubMed]
  3. C. Cocorullo, M. Iodice, I. Rendina, and P. M. Sarro, “Silicon thermo-optical micro-modulator with 700 kHz – 3 dB bandwidth,” IEEE Photon. Technol. Lett. 7(4), 363–365 (1995). [CrossRef]
  4. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005). [CrossRef] [PubMed]
  5. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15, 660–668 (2007). [CrossRef] [PubMed]
  6. F. Y. Gardes, G. T. Reed, A. P. Knights, and G. Mashanovich, “Evolution of optical modulation using majority carrier plasma dispersion effect in SOI”, Proc. of SPIE 6898, 68980C–68980C–10 (2008). [CrossRef]
  7. A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A high-speed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427(6975), 615–618 (2004). [CrossRef] [PubMed]
  8. A. Liu, “Announcing the world's first 40G silicon laser modulator”, http://blogs.intel.com/research/2007/07/40g_modulator.php
  9. Y. Jiang, W. Jiang, L. Gu, X. Chen, and R. T. Chen, “80-micron interaction length silicon photonic crystal waveguide modulator,” Appl. Phys. Lett. 87(22), 221105 (2005). [CrossRef]
  10. A. Cutolo, M. Iodice, A. Irace, P. Spirito, and L. Zeni, “An electrically controlled Bragg reflector integrated in a rib silicon on insulator waveguide,” Appl. Phys. Lett. 71(2), 199 (1997). [CrossRef]
  11. G. Coppola, A. Irace, M. Iodice, and A. Cutolo, “Simulation and analysis of a high-efficiency silicon optoelectronic modulator based on a Bragg mirror,” Opt. Eng. 40(6), 1076–1081 (2001). [CrossRef]
  12. C. A. Barrios, V. Rosa de Almeida, and M. Lipson, “Low-power-consumption short-length and high-modulation-depth silicon electrooptic modulator,” J. Lightwave Technol. 21(4), 1089–1098 (2003). [CrossRef]
  13. X. Xiao, J. C. Sturm, K. K. Goel, and P. V. Schwartz, “Fabry-Perot optical intensity modulator at 1.3μm in silicon,” IEEE Photon. Technol. Lett. 3(3), 230–231 (1991). [CrossRef]
  14. M. Y. Liu and S. Chou, “High-modulation-depth and short-cavity-length silicon Fabry-Perot modulator with two grating Bragg reflectors,” Appl. Phys. Lett. 68(2), 170 (1996). [CrossRef]
  15. C. A. Barrios, V. R. Almeida, R. Panepucci, and M. Lipson, “Electrooptic Modulation of Silicon-on-Insulator Submicrometer-Size Waveguide Devices,” J. Lightwave Technol. 21(10), 2332–2339 (2003). [CrossRef]
  16. S. Manipatruni, Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “High Speed Carrier Injection 18Gb/s Silicon Micro-ring Electro-optic Modulator,” in Proceedings of Lasers and Electro-Optics Society (IEEE, 2007), pp.537–538.
  17. R. D. Lareau, L. Friedman, and R. A. Soref, “Waveguided electro-optical intensity modulation in a Si/GexSi1-x/Si heterojunction bipolar transistor,” Electron. Lett. 26(20), 1653–1655 (1990). [CrossRef]
  18. A. Cutolo, M. Iodice, P. Spirito, and L. Zeni, “Silicon Electro-Optic Modulator Based on a Three Terminal Device Integrated in a Low-Loss Single-Mode SOI Waveguide,” J. Lightwave Technol. 15(3), 505–518 (1997). [CrossRef]
  19. S. J. McNab, N. Moll, and Y. A. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11, 2927–2939 (2003). [CrossRef] [PubMed]
  20. R. A. Soref and B. R. Bennett, “Kramers-Kronig analysis of electro-optical switching in silicon,” SPIE Integr. Opt. Circuit Eng. 704, 32–37 (1986).
  21. S. M. Sze, and K. K. Ng, Physics of Semiconductor Devices (John Wiley & Sons, Inc, 2007), Chap. 5.
  22. R. A. Soref, J. Schmidtchen, and K. Petermann, “Large Single-Mode Rib Waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron. 27(8), 1971–1974 (1991). [CrossRef]
  23. A. Sciuto, S. Libertino, A. Alessandria, S. Coffa, and G. Coppola, “Design, Fabrication, and Testing of an Interated Si-Based Light Modulator,” J. Lightwave Technol. 21(1), 228–235 (2003). [CrossRef]
  24. C. E. Png, G. T. Reed, R. M. H. Atta, G. Ensell, and A. G. R. Evans, “Development of Small Silicon Modulators in SOI,” Proc. SPIE 4997, 190–197 (2003). [CrossRef]
  25. L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High Speed Silicon Mach-Zehnder Modulator,” Opt. Express 13(8), 3129–3135 (2005). [CrossRef] [PubMed]
  26. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s Carrier-injection-based silicon microring silicon modulators,” Opt. Express 15, 430–436 (2007). [CrossRef] [PubMed]
  27. S. Manipatruni, Q. Xu, and M. Lipson, “PINIP based high-speed high-extinction ratio micron-size silicon electro-optic modulator,” Opt. Express 15(20), 13035–13042 (2007). [CrossRef] [PubMed]
  28. F. Y. Gardes, K. L. Tsakmakidis, D. Thomson, G. T. Reed, G. Z. Mashanovich, O. Hess, and D. Avitabile, “Micrometer size polarisation independent depletion-type photonic modulator in Silicon On Insulator,” Opt. Express 15(9), 5879–5884 (2007). [CrossRef] [PubMed]
  29. S. Deng, Z. R. Huang, J.-R. Guo, J. F. McDonald, and R. P. Kraft, “Numerical Investigation of a SiGe HBT Electro-optic Modulator,” in proceedings of IEEE/LEOS Winter Topicals Meeting Series, 14–15, (2009) [CrossRef]
  30. W. M. J. Green, M. J. Rooks, L. Sekaric, and Y. A. Vlasov, “Ultra-compact, low RF power, 10Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007). [CrossRef] [PubMed]
  31. Y. Taur, and T. H. Ning, Fundamentals of Moerdern VLSI Devices (Cambridge University Press, 1998), Chap. 6.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited