OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 16 — Aug. 3, 2009
  • pp: 13447–13457

Detecting intrinsic scattering changes correlated to neuron action potentials using optical coherence imaging

Benedikt W. Graf, Tyler S. Ralston, Han-Jo Ko, and Stephen A. Boppart  »View Author Affiliations

Optics Express, Vol. 17, Issue 16, pp. 13447-13457 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (308 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate how optical coherence imaging techniques can detect intrinsic scattering changes that occur during action potentials in single neurons. Using optical coherence tomography (OCT), an increase in scattering intensity from neurons in the abdominal ganglion of Aplysia californica is observed following electrical stimulation of the connective nerve. In addition, optical coherence microscopy (OCM), with its superior transverse spatial resolution, is used to demonstrate a direct correlation between scattering intensity changes and membrane voltage in single cultured Aplysia bag cell neurons during evoked action potentials. While intrinsic scattering changes are small, OCT and OCM have potential use as tools in neuroscience research for non-invasive and non-contact measurement of neural activity without electrodes or fluorescent dyes. These techniques have many attractive features such as high sensitivity and deep imaging penetration depth, as well as high temporal and spatial resolution. This study demonstrates the first use of OCT and OCM to detect functionally-correlated optical scattering changes in single neurons.

© 2009 OSA

OCIS Codes
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.2655) Medical optics and biotechnology : Functional monitoring and imaging

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: June 1, 2009
Revised Manuscript: July 13, 2009
Manuscript Accepted: July 15, 2009
Published: August 3, 2009

Virtual Issues
Vol. 4, Iss. 10 Virtual Journal for Biomedical Optics

Benedikt W. Graf, Tyler S. Ralston, Han-Jo Ko, and Stephen A. Boppart, "Detecting intrinsic scattering changes 
correlated to neuron action potentials 
using optical coherence imaging," Opt. Express 17, 13447-13457 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. A. Nicolelis and S. Ribeiro, “Multielectrode recordings: the next steps,” Curr. Opin. Neurobiol. 12(5), 602–606 (2002). [CrossRef]
  2. B. J. Baker, E. K. Kosmidis, D. Vucinic, C. X. Falk, L. B. Cohen, M. Djurisic, and D. Zecevic, “Imaging brain activity with voltage- and calcium-sensitive dyes,” Cell. Mol. Neurobiol. 25(2), 245–282 (2005). [CrossRef]
  3. D. K. Hill and R. D. Keynes, “Opacity changes in stimulated nerve,” J. Physiol. 108, 278–281 (1949). [PubMed]
  4. L. B. Cohen, R. D. Keynes, and D. Landowne, “Changes in axon light scattering that accompany the action potential: current-dependent components,” J. Physiol. 224(3), 727–752 (1972).
  5. L. B. Cohen, R. D. Keynes, and B. Hille, “Light scattering and birefringence changes during nerve activity,” Nature 218(5140), 438–441 (1968). [CrossRef]
  6. R. A. Stepnoski, A. LaPorta, F. Raccuia-Behling, G. E. Blonder, R. E. Slusher, and D. Kleinfeld, “Noninvasive detection of changes in membrane potential in cultured neurons by light scattering,” Proc. Natl. Acad. Sci. U.S.A. 88(21), 9382–9386 (1991). [CrossRef]
  7. K. Holthoff and O. W. Witte, “Intrinsic optical signals in rat neocortical slices measured with near-infrared dark-field microscopy reveal changes in extracellular space,” J. Neurosci. 16(8), 2740–2749 (1996). [PubMed]
  8. R. U. Maheswari, H. Takaoka, R. Homma, H. Kadono, and M. Tanifuji, “Implementation of optical coherence tomography (OCT) in visualization of functional structures of cat visual cortex,” Opt. Commun. 202(1-3), 47–54 (2002). [CrossRef]
  9. R. U. Maheswari, H. Takaoka, H. Kadono, R. Homma, and M. Tanifuji, “Novel functional imaging technique from brain surface with optical coherence tomography enabling visualization of depth resolved functional structure in vivo,” J. Neurosci. Methods 124(1), 83–92 (2003). [CrossRef]
  10. U. M. Rajagopalan and M. Tanifuji, “Functional optical coherence tomography reveals localized layer-specific activations in cat primary visual cortex in vivo,” Opt. Lett. 32(17), 2614–2616 (2007). [CrossRef] [PubMed]
  11. A. D. Aguirre, Y. Chen, J. G. Fujimoto, L. Ruvinskaya, A. Devor, and D. A. Boas, “Depth-resolved imaging of functional activation in the rat cerebral cortex using optical coherence tomography,” Opt. Lett. 31(23), 3459–3461 (2006). [CrossRef]
  12. T. Akkin, D. P. Dave, T. E. Milner, and H. Rylander Iii, “Detection of neural activity using phase-sensitive optical low-coherence reflectometry,” Opt. Express 12(11), 2377–2386 (2004). [CrossRef]
  13. C. Fang-Yen, M. C. Chu, H. S. Seung, R. R. Dasari, and M. S. Feld, “Noncontact measurement of nerve displacement during action potential with a dual-beam low-coherence interferometer,” Opt. Lett. 29(17), 2028–2030 (2004). [CrossRef]
  14. T. Akkin, C. Joo, and J. F. de Boer, “Depth-resolved measurement of transient structural changes during action potential propagation,” Biophys. J. 93(4), 1347–1353 (2007). [CrossRef]
  15. M. Lazebnik, D. L. Marks, K. Potgieter, R. Gillette, and S. A. Boppart, “Functional optical coherence tomography for detecting neural activity through scattering changes,” Opt. Lett. 28(14), 1218–1220 (2003). [CrossRef]
  16. X. C. Yao, A. Yamauchi, B. Perry, and J. S. George, “Rapid optical coherence tomography and recording functional scattering changes from activated frog retina,” Appl. Opt. 44(11), 2019–2023 (2005). [CrossRef]
  17. K. Bizheva, R. Pflug, B. Hermann, B. Povazay, H. Sattmann, P. Qiu, E. Anger, H. Reitsamer, S. Popov, J. R. Taylor, A. Unterhuber, P. Ahnelt, and W. Drexler, “Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 5066–5071 (2006).
  18. V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, “In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography,” Opt. Lett. 31(15), 2308–2310 (2006). [CrossRef]
  19. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19(8), 590–592 (1994). [CrossRef]
  20. L. K. Kaczmarek and F. Strumwasser, “The expression of long lasting afterdischarge by isolated Aplysia bag cell neurons,” J. Neurosci. 1(6), 626–634 (1981).
  21. D. Landowne, “Molecular motion underlying activation and inactivation of sodium channels in squid giant axons,” J. Membr. Biol. 88(2), 173–185 (1985).
  22. F. E. Dudek and A. Kossatz, “Conduction velocity and spike duration during afterdischarge in neuroendocrine bag cells of Aplysia,” J. Neurobiol. 13(4), 319–326 (1982). [CrossRef]
  23. P. R. Harley, “A possible age-related decrement in the conduction velocity of Aplysia neuron R2,” Experientia 31(8), 901–902 (1975). [CrossRef]
  24. J. F. de Boer, T. E. Milner, M. J. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22(12), 934–936 (1997). [CrossRef]
  25. B. J. Vakoc, S. H. Yun, J. F. de Boer, G. J. Tearney, and B. E. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express 13(14), 5483–5493 (2005). [CrossRef]
  26. B. H. Park, M. C. Pierce, B. Cense, and J. F. de Boer, “Real-time multi-functional optical coherence tomography,” Opt. Express 11(7), 782–793 (2003). [CrossRef]
  27. R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31(20), 2975–2977 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited