OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 16 — Aug. 3, 2009
  • pp: 13561–13575

Rigorous modal analysis of metallic nanowire chains

Amit Hochman and Yehuda Leviatan  »View Author Affiliations

Optics Express, Vol. 17, Issue 16, pp. 13561-13575 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (521 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Nanowire chains (NCs) are analyzed by use of a rigorous, full-wave, Source-Model Technique (SMT). The technique employs a proper periodic Green’s function which converges regardless of whether the structure is lossless or lossy. By use of this Green’s function, it is possible to determine the complex propagation constants of the NC modes directly and accurately, as solutions of a dispersion equation. To demonstrate the method, dispersion curves and mode profiles for a few NCs are calculated.

© 2009 Optical Society of America

OCIS Codes
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(050.1755) Diffraction and gratings : Computational electromagnetic methods
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Diffraction and Gratings

Original Manuscript: April 2, 2009
Revised Manuscript: May 26, 2009
Manuscript Accepted: June 7, 2009
Published: July 23, 2009

Amit Hochman and Yehuda Leviatan, "Rigorous modal analysis of metallic nanowire chains," Opt. Express 17, 13561-13575 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Quinten, A. Leitner, J. Krenn, and F. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23, 1331-1333 (1998). [CrossRef]
  2. P. Berini, "Figures of merit for surface plasmon waveguides," Opt. Express 14, 13,030-13,042 (2006). [CrossRef]
  3. F. Capolino, D. R. Jackson, and D. R. Wilton, "Fundamental properties of the field at the interface between air and a periodic artificial material excited by a line source," IEEE Trans. Antennas Propag. 53, 91-99 (2005). [CrossRef]
  4. R. E. Collin and F. J. Zucker, Antenna Theory, Part II, (McGraw-Hill, 1969).
  5. J. Burke, G. Stegeman, and T. Tamir, "Surface-polariton-like waves guided by thin, lossy metal films," Phys. Rev. B 33, 5186-5201 (1986). [CrossRef]
  6. L. Novotny and C. Hafner, "Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function," Phys. Rev. E 50, 4094-4106 (1994). [CrossRef]
  7. A. Hochman and Y. Leviatan, "Efficient and spurious-free integral-equation-based optical waveguide mode solver," Opt. Express 15, 14,431-14,453 (2007). [CrossRef]
  8. W. Weber and G. Ford, "Propagation of optical excitations by dipolar interactions in metal nanoparticle chains," Phys. Rev. B 70, 125,429 (2004). [CrossRef]
  9. A. Boag, Y. Leviatan, and A. Boag, "Analysis of two-dimensional electromagnetic scattering from a periodic grating of cylinders using a hybrid current model," Rad. Sci. 23, 612-624 (1988). [CrossRef]
  10. D. Citrin, "Plasmon-polariton transport in metal-nanoparticle chains embedded in a gain medium," Opt. Lett. 31, 98-100 (2006). [CrossRef] [PubMed]
  11. A. F. Koenderink and A. Polman, "Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains," Phys. Rev. B 74, 033402 (2006). [CrossRef]
  12. A. Alu and N. Engheta, "Theory of linear chains of metamaterial/plasmonic particles as subdiffraction optical nanotransmission lines," Phys. Rev. B 74, 205,436 (2006). [CrossRef]
  13. Q. H. Wei, K. H. Su, S. Durant, and X. Zhang, "Plasmon Resonance of Finite One-Dimensional Au Nanoparticle Chains," Nano Lett. 4, 1067-1072 (2004). [CrossRef]
  14. T. Yang and K. Crozier, "Dispersion and extinction of surface plasmons in an array of gold nanoparticle chains: influence of the air/glass interface," Opt. Express 16, 8570-8580 (2008). [CrossRef] [PubMed]
  15. H. Chu, W. Ewe, W. Koh, and E. Li, "Remarkable influence of the number of nanowires on plasmonic behaviors of the coupled metallic nanowire chain," Appl. Phys. Lett. 92, 103,103 (2008). [CrossRef]
  16. Y. Leviatan, A. Boag, and A. Boag, "Generalized formulations for electromagnetic scattering from perfectly conducting and homogeneous material bodies-theory and numerical solution," IEEE Trans. Antennas Propag. 36, 1722-1734 (1988). [CrossRef]
  17. A. Boag, Y. Leviatan, and A. Boag, "Analysis of electromagnetic scattering from linear periodic arrays of perfectly conducting bodies using a cylindrical-current model," IEEE Trans. Antennas Propag. 39, 1332-1337 (1991). [CrossRef]
  18. A. Ludwig and Y. Leviatan, "Analysis of bandgap characteristics of two-dimensional periodic structures by using the source-model technique," J. Opt. Soc. Am. A 20, 1553-1562 (2003). [CrossRef]
  19. A. Hochman and Y. Leviatan, "Analysis of strictly bound modes in photonic crystal fibers by use of a sourcemodel technique," J. Opt. Soc. Am. A 21, 1073-1081 (2004). [CrossRef]
  20. C. Hafner, The Generalized Multipole Technique for Computational Electromagnetics, (Artech House, 1990).
  21. O. M. Bucci, G. D’Elia, and M. Santojanni, "Non-redundant implementation of method of auxiliary sources for smooth 2D geometries," Electronics Letters 41(22), 1203-1205 (2005). [CrossRef]
  22. G. Tayeb and S. Enoch, "Combined fictitious-sources-scattering-matrix method," J. Opt. Soc. Am. A 21(8), 1417-1423 (2004). [CrossRef]
  23. D. Maystre, M. Saillard, and G. Tayeb, "Special methods of wave diffraction" in Scattering, P. Sabatier and E. R. Pike, eds., (Academic Press, 2001).
  24. G. Fairweather and A. Karageorghis, "The method of fundamental solutions for elliptic boundary value problems," Advances in Computational Mathematics 9(1), 69-95 (1998). [CrossRef]
  25. V. D. Kupradze, "About approximate solutions of a mathematical physics problem," Success Math. Sci. 22(2), 59-107 (1967).
  26. I. N. Vekua, Reports of the Academy of Science of the USSR 44(6), 901-909 (1953).
  27. D. I. Kaklamani and H. T. Anastassiu, "Aspects of the Method of Auxiliary Sources (MAS) in computational electromagnetics," IEEE Antennas Propag. Mag. 44, 48-64 (2002). [CrossRef]
  28. R. Petit, Electromagnetic Theory of Gratings, (Springer-Verlag, 1980).
  29. M. Szpulak, W. Urbanczyk, E. Serebryannikov, A. Zheltikov, A. Hochman, Y. Leviatan, R. Kotynski, and K. Panajotov, "Comparison of different methods for rigorous modeling of photonic crystal fibers," Opt. Express 14, 5699-5714 (2006). [CrossRef] [PubMed]
  30. W. Schroeder and I. Wolff, "The origin of spurious modes in numerical solutions of electromagnetic field eigenvalue problems," IEEE Trans. Microwave Theory Tech. 42, 644-653 (1994). [CrossRef]
  31. A. Peterson, L. Scott, and R. Mittra, Computational Methods for Electromagnetics, (IEEE Press, 1998).
  32. F. J. Harris, "On the use of windows for harmonic analysis with the discrete Fourier transform," Proc. IEEE 66, 51-83 (1978). [CrossRef]
  33. R. Bellman, Introduction to matrix analysis, (McGraw-Hill, 1970).
  34. E. Moreno, D. Erni, C. Hafner, and R. Vahldieck, "Multiple multipole method with automatic multipole setting applied to the simulation of surface plasmons in metallic nanostructures," J. Opt. Soc. Am. A 19, 101-111 (2002). [CrossRef]
  35. K. C. Huang, E. Lidorikis, X. Jiang, J. D. Joannopoulos, K. A. Nelson, P. Bienstman, and S. Fan, "Nature of lossy Bloch states in polaritonic photonic crystals," Phys. Rev. B 69, 195,111 (2004). [CrossRef]
  36. B. Prade and J. Y. Vinet, "Guided optical waves in fibers with negative dielectric constant," J. Lightwave Technol. 12, 6-18 (1994). [CrossRef]
  37. S. Eisler and Y. Leviatan, "Analysis of electromagnetic scattering from metallic and penetrable cylinders with edges using a multifilament current model," IEE-Proc. H 136, 431-438 (1989)

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited