OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 16 — Aug. 3, 2009
  • pp: 13609–13614

An L-band monolithic InAs/InP quantum dot mode-locked laser with femtosecond pulses

Z.G. Lu, J.R. Liu, P.J. Poole, S. Raymond, P.J. Barrios, D. Poitras, G. Pakulski, P. Grant, and D. Roy-Guay  »View Author Affiliations


Optics Express, Vol. 17, Issue 16, pp. 13609-13614 (2009)
http://dx.doi.org/10.1364/OE.17.013609


View Full Text Article

Enhanced HTML    Acrobat PDF (293 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have developed an InAs/InP quantum dot (QD) gain material using a double cap growth procedure and GaP sublayer to tune QDs into the L-band. By using it, a passive L-band mode-locked laser with pulse duration of 445 fs at the repetition rate of 46 GHz was demonstrated. The 3-dB linewidth of the RF spectrum is less than 100 KHz. The lasing threshold injection current is 24 mA with an external differential quantum efficiency of 22% and an average output power of 27 mW. The relationship between pulse duration and 3-dB spectral bandwidth as a function of injection current was investigated.

© 2009 OSA

OCIS Codes
(130.0250) Integrated optics : Optoelectronics
(130.3120) Integrated optics : Integrated optics devices
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.5960) Lasers and laser optics : Semiconductor lasers
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(320.7160) Ultrafast optics : Ultrafast technology

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: May 18, 2009
Revised Manuscript: July 13, 2009
Manuscript Accepted: July 17, 2009
Published: August 3, 2009

Citation
Z.G. Lu, J.R. Liu, P.J. Poole, S. Raymond, P.J. Barrios, D. Poitras, G. Pakulski, P. Grant, and D. Roy-Guay, "An L-band monolithic InAs/InP quantum dot mode-locked laser with femtosecond pulses," Opt. Express 17, 13609-13614 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-16-13609


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. M. Sivalingam, and S. Subramaniam, “Optical WDM Networks — Principles and Practice,” 3–374 (Springer, Berlin Heidelberg, 2000).
  2. T. Sakamoto, J. Kani, M. Jinno, S. Aisawa, M. Fukui, M. Yamada, and K. Oguchi, “Wide wavelength band (1535-1560 nm and 1574-1600 nm), 28x10Gbit/s WDM transmission over 320km dispersion-shifted fibre,” Electron. Lett. 34(4), 292–294 (1998). [CrossRef]
  3. L.A. Jiang, E.P. Ippen and H. Yokoyama, “Semiconductor mode-locked lasers as pulse sources for high bit rate data transmission,” in Book Series of Ultrahigh-Speed Optical Transmission Technology3, 21–51 (Springer Berlin Heidelberg, 2007). [CrossRef]
  4. E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007). [CrossRef]
  5. Z. G. Lu, J. R. Liu, S. Raymond, P. J. Poole, P. J. Barrios, G. Pakulski, D. Poitras, F. G. Sun, S. Taebi, and T. J. Hall, “Ultra-broadband quantum-dot semiconductor optical amplifier and its applications,” The Proceedings of the Optical Fiber Communication Conference, Anaheim, CA, USA, paper JThA33 (25–29 March 2007).
  6. R. Brenot, F. Lelarge, O. Legouezigou, F. Pommereau, F. Poingt, L. Legouezigou, E. Derouin, O. Drisse, B. Rousseau, F. Martin, and G. H. Duan, “Quantum dots semiconductor optical amplifier with 3-dB bandwidth of up to 120 nm in semi-cooled operation,” The Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, paper OTuC1 (24–28 February 2008).
  7. Y. Tanaka, M. Ishida, Y. Maeda, T. Akiyama, T. Yamamoto, H. Z. Song, M. Yamaguchi, Y. Nakata, K. Nishi, M. Sugawara, and Y. Arakawa, “High-speed and temperature-insensitive operation in 1.3-µm InAs/GaAs high-density quantum dot lasers,” The Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, paper OWJ1 (24–26 March 2009).
  8. G. T. Liu, A. Stintz, H. Li, K. J. Malloy, and L. F. Lester, “Extremely low room-temperature threshold current density diode lasers using lnAs dots in In0.05Ga0.85As quantum well,” Electron. Lett. 35(14), 1163–1165 (1999). [CrossRef]
  9. A. J. Zilkie, J. Meier, P. W. E. Smith, M. Mojahedi, J. S. Aitchison, P. J. Poole, C. N. Allen, P. J. Barrios, and D. Poitras, “Femtosecond gain and index dynamics in an InAs/InGaAsP quantum dot amplifier operating at 1.55 microm,” Opt. Express 14(23), 11453–11459 (2006). [CrossRef] [PubMed]
  10. X. D. Huang, A. Stintz, H. Li, F. Lester, J. L. Cheng, and K. J. Malloy, “Passive mode-locking in 1.3 µm two-section InAs quantum dot lasers,” Appl. Phys. Lett. 78(19), 2825–2827 (2001). [CrossRef]
  11. J. Renaudier, R. Brenot, B. Dagens, F. Lelarge, B. Rousseau, F. Poingt, O. Legouezigou, F. Pommereau, A. Accard, P. Gallion, and G. H. Duan, “45 GHz self-pulsation with narrow linewidth in quantum dot Fabry-Perot semiconductor lasers at 1.5 μm,” Electron. Lett. 41(18), 1007–1008 (2005). [CrossRef]
  12. M. J. R. Heck, E. A. J. M. Bente, B. Smalbrugge, Y. S. Oei, M. K. Smit, S. Anantathanasarn, and R. Nötzel, “Observation of Q-switching and mode-locking in two-section InAs/InP (100) quantum dot lasers around 1.55 mum,” Opt. Express 15(25), 16292–16301 (2007). [CrossRef] [PubMed]
  13. Z. G. Lu, J. R. Liu, S. Raymond, P. J. Poole, P. J. Barrios, and D. Poitras, “312-fs pulse generation from a passive C-band InAs/InP quantum dot mode-locked laser,” Opt. Express 16(14), 10835–10840 (2008). [CrossRef] [PubMed]
  14. Z. G. Lu, J. R. Liu, S. Raymond, P. J. Poole, P. J. Barrios, and D. Poitras, “Femtosecond pulse generation in a C-band quantum dot laser,” The Proceedings of SPIE: Optoelectronic Materials and Devices III (edited by Yi Luo, Jens Buus, Fumio Koyama, and Yu-Hwa Lo), 7135, 71352L–1-7 (2008).
  15. X. F. Tang, J. C. Cartledge, A. Shen, A. Akrout, and G. H. Duan, “Low-timing-jitter all-optical clock recovery for 40 Gbits/s RZ-DPSK and NRZ-DPSK signals using a passively mode-locked quantum-dot Fabry-Perot semiconductor laser,” Opt. Lett. 34(7), 899–901 (2009). [CrossRef] [PubMed]
  16. P. J. Poole, R. L. Williams, J. Lefebvre, and S. Moisa, “Using As/P exchange processes to modify InAs/InP quantum dots,” J. Cryst. Growth 257(1-2), 89–96 (2003). [CrossRef]
  17. P. J. Poole, K. Kaminska, P. Barrios, Z. G. Lu, and J. R. Liu, “Growth of InAs/InP-based quantum dots for 1.55 µm laser applications,” J. Cryst. Growth 311(6), 1482–1486 (2009). [CrossRef]
  18. C. Nì, “Allen, P.J. Poole, P. Marshall, J. Fraser, S. Raymond and S. Fafard, “InAs self-assembled quantum dot lasers grown on (100) InP,” Appl. Phys. Lett. 80, 3629–3631 (2002). [CrossRef]
  19. J. R. Liu, Z. G. Lu, S. Raymond, P. J. Poole, P. J. Barrios, G. Pakulski, D. Poitras, G. Z. Xiao, and Z. Y. Zhang, “Uniform 90-channel multiwavelength InAs/InGaAsP quantum dot laser,” Electron. Lett. 43(8), 458–460 (2007). [CrossRef]
  20. J. R. Liu, Z. G. Lu, S. Raymond, P. J. Poole, P. J. Barrios, and D. Poitras, “1.6-μm multi-wavelength emission of an InAs-InGaAsP quantum-dot laser,” IEEE Photon. Technol. Lett. 20(2), 81–83 (2008). [CrossRef]
  21. Z. G. Lu, J. R. Liu, P. J. Poole, S. Raymond, P. J. Barrios, D. Poitras, G. Pakulski, X. P. Zhang, K. Hinzer, and T. J. Hall, “Low noise InAs/InP quantum dot C-band monolithic multiwavelength lasers for WDM-PONs,” The Proceedings of the Optical Fiber Communication Conference, San Diego, CA, USA, paper JWA27 (24–26 March 2009).
  22. C. Gosset, K. Merghem, A. Martinez, G. Moreau, P. Patriarche, G. Aubin, A. Ramdane, J. Landreau, and F. Lelarge, “Subpicosecond pulse genearation at 134 GHz using a quantum-dash-based Fabry-Perot laser emitting at 1.56 µm,” Appl. Phys. Lett. 88(24), 241105 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited