OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 16 — Aug. 3, 2009
  • pp: 13615–13623

Light focusing on a stack of metal-insulator-metal waveguides sharp edge

W. M. Saj  »View Author Affiliations

Optics Express, Vol. 17, Issue 16, pp. 13615-13623 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (983 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Near field light focusing by two-dimensional isosceles triangle shaped stack of silver plasmon-polaritons waveguides is being investigated numerically with full-vectorial Finite Difference Time Domain method for H-polarized light and wavelength λ=500 nm. For wide angle of tip, results are in good agreement with theoretically predicted propagation constant of light in stack and while discrepancy becomes significant for smaller angle. Physical phenomena of refraction and interference, similar to ones in dielectric axicons lead to conversion of a Gaussian beam incident on the flat side of the stack into a narrow light jet behind the structure sharp edge. The beam is concentrated into long focal region of 0.37 λ width and enhancement of field amplitude is achieved in spite of significant absorption in the structure. The results are compared with bulk dielectric structure.

© 2009 OSA

OCIS Codes
(350.5500) Other areas of optics : Propagation
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Optics at Surfaces

Original Manuscript: May 22, 2009
Revised Manuscript: June 24, 2009
Manuscript Accepted: July 9, 2009
Published: August 3, 2009

W. M. Saj, "Light focusing on a stack of metal-insulator-metal waveguides sharp edge," Opt. Express 17, 13615-13623 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. A. Maier, Plasmonics. Fundamentals and Applications (Springer, Berlin 2007).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  3. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7-8), 20–27 (2006). [CrossRef]
  4. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008). [CrossRef] [PubMed]
  5. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008). [CrossRef] [PubMed]
  6. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006). [CrossRef]
  7. S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Modal analysis and coupling in metal-insulator-metal waveguides,” Phys. Rev. B 79(3), 035120 (2009). [CrossRef]
  8. Z. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85(4), 642–644 (2004). [CrossRef]
  9. H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-18-6815 . [CrossRef] [PubMed]
  10. R. Gordon, “Proposal for superfocusing at visible wavelengths using radiationless interference of a plasmonic array,” Phys. Rev. Lett. 102(20), 207402 (2009). [CrossRef] [PubMed]
  11. X. Fan and G. P. Wang, “Nanoscale metal waveguide arrays as plasmon lenses,” Opt. Lett. 31(9), 1322–1324 (2006). [CrossRef] [PubMed]
  12. X. Fan, G. P. Wang, J. C. W. Lee, and C. T. Chan, “All-angle broadband negative refraction of metal waveguide arrays in the visible range: theoretical analysis and numerical demonstration,” Phys. Rev. Lett. 97(7), 073901 (2006). [CrossRef] [PubMed]
  13. W. M. Saj, “Light focusing with tip formed array of plasmon-polariton waveguides,” Proc. SPIE 6641, 664120 (2007). [CrossRef]
  14. H. Kurt, “Limited-diffraction light propagation with axicon-shape photonic crystals,” J. Opt. Soc. Am. B 26(5), 981–986 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=josab-26-5-981 . [CrossRef]
  15. C. Rockstuhl, C. R. Simovski, S. A. Tretyakov, and F. Lederer, “Metamaterial nanotips,” Appl. Phys. Lett. 94(11), 113110 (2009). [CrossRef]
  16. J. H. McLeod, “The Axicon: A New Type of Optical Element,” J. Opt. Soc. Am. 44(8), 592 (1954), http://www.opticsinfobase.org/abstract.cfm?URI=josa-44-8-592 . [CrossRef]
  17. Z. Jaroszewicz, A. Burvall, and A. T. Friberg, “Axicon - the Most Important Optical Element,” Opt. Photonics News 16, 34–39 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=OPN-16-4-34 [CrossRef]
  18. R. M. Herman and T. A. Wiggins, “Production and uses of diffractionless beams,” J. Opt. Soc. Am. A 8(6), 932–942 (1991), http://www.opticsinfobase.org/abstract.cfm?URI=josaa-8-6-932 . [CrossRef]
  19. Y.-J. Yu, H. Noh, M.-H. Hong, H.-R. Noh, Y. Arakawa, and W. Jhe, “Focusing characteristics of optical fiber axicon microlens for near-field spectroscopy: Dependence of tip apex angle,” Opt. Commun. 267(1), 264–270 (2006). [CrossRef]
  20. T. Grosjean, A. Fahys, M. Suarez, D. Charraut, R. Salut, and D. Courjon, “Annular nanoantenna on fibre micro-axicon,” J. Microsc. 229(2), 354–364 (2008). [CrossRef] [PubMed]
  21. A. E. Martirosyan, C. Altucci, C. de Lisio, A. Porzio, S. Solimeno, and V. Tosa, “Fringe pattern of the field diffracted by axicons,” J. Opt. Soc. Am. A 21(5), 770–776 (2004), http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-21-5-770 . [CrossRef]
  22. C Zheng, Y Zhang, and D Zhao,” Calculation of the vectorial field distribution of an axicon illuminated by a linearly polarized Guassian beam,” Optik 117,3, 118–122 (2006). [CrossRef]
  23. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, “Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations,” Phys. Rev. Lett. 90(16), 167401 (2003). [CrossRef] [PubMed]
  24. Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: a potential novel visible-light ultramicroscopy technique,” Opt. Express 12(7), 1214–1220 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-7-1214 . [CrossRef] [PubMed]
  25. A. Devilez, B. Stout, N. Bonod, and E. Popov, “Spectral analysis of three-dimensional photonic jets,” Opt. Express 16(18), 14200–14212 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-18-14200 . [CrossRef] [PubMed]
  26. A. P. Hibbins, M. J. Lockyear, I. R. Hooper, and J. R. Sambles, “Waveguide arrays as plasmonic metamaterials: transmission below cutoff,” Phys. Rev. Lett. 96(7), 073904 (2006). [CrossRef] [PubMed]
  27. T. T. Minh, K. Tanaka, and M. Tanaka, “Complex propagation constants of surface plasmon polariton rectangular waveguide by method of lines,” Opt. Express 16(13), 9378–9390 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-13-9378 . [CrossRef] [PubMed]
  28. M. S. Kushwaha and B. Djafari-Rouhani, “Plasma excitations in multicoaxial cables,” Phys. Rev. B 71(15), 153316 (2005). [CrossRef]
  29. F. I. Baida, A. Belkhir, D. Van Labeke, and O. Lamrous, “Subwavelength metallic coaxial waveguides in the optical range: Role of the plasmonic modes,” Phys. Rev. B 74(20), 205419 (2006). [CrossRef]
  30. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, Norwood, MA 2000).
  31. P. Johnson and R. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  32. A. Hohenau, A. Drezet, M. Weissenbacher, F. R. Aussenegg, and J. R. Krenn, “Effects of damping on surface-plasmon pulse propagation and refraction,” Phys. Rev. B 78(15), 155405 (2008). [CrossRef]
  33. D. R. Smith, P. M. Rye, J. J. Mock, D. C. Vier, and A. F. Starr, “Enhanced diffraction from a grating on the surface of a negative-index metamaterial,” Phys. Rev. Lett. 93(13), 137405 (2004). [CrossRef] [PubMed]
  34. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004). [CrossRef] [PubMed]
  35. A. Rubinowicz, “Thomas Young and the Theory of Diffraction,” Nature 180(4578), 160–162 (1957). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (947 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited