OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 17, Iss. 16 — Aug. 3, 2009
  • pp: 13677–13684

Thermo-optic properties of epitaxial Sr0.6Ba0.4Nb2O6 waveguides and their application as optical modulator

Wen Chao Liu, Chee Leung Mak, and Kin Hung Wong  »View Author Affiliations


Optics Express, Vol. 17, Issue 16, pp. 13677-13684 (2009)
http://dx.doi.org/10.1364/OE.17.013677


View Full Text Article

Enhanced HTML    Acrobat PDF (620 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A prism-coupler technique was introduced to determine the refractive indices and thermo-optic coefficients of epitaxial Sr0.6Ba0.4Nb2O6 (SBN) waveguides, in a temperature range covering the ferroelectric-paraelectric phase transition. A strong enhancement in the TO coefficient is observed near Tc. This strong enhancement is related to the critical change of the polarization. The values of dne /dT are significantly larger than dno /dT due to the larger quadratic electro-optic coefficient in TM polarization. In TM mode, the refractive index of SBN is increased by 1.3% as the temperature is increased to 160°C. Our results suggest that SBN waveguide is a potential candidate for thermo-optic modulators and switches.

© 2009 OSA

OCIS Codes
(160.6840) Materials : Thermo-optical materials
(230.7390) Optical devices : Waveguides, planar
(130.4110) Integrated optics : Modulators

ToC Category:
Optical Devices

History
Original Manuscript: May 20, 2009
Revised Manuscript: June 24, 2009
Manuscript Accepted: July 14, 2009
Published: July 24, 2009

Citation
Wen Chao Liu, Chee Leung Mak, and Kin Hung Wong, "Thermo-optic properties of epitaxial Sr0.6Ba0.4Nb2O6 waveguides and their application as optical modulator," Opt. Express 17, 13677-13684 (2009)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-16-13677


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Nishihara, M. Haruna, and T. Suhara, Optical Integrated Circuits (McGraw-Hill, New York, 1989).
  2. G. Cocorullo, M. Iodice, and I. Rendina, “All-silicon fabry-perot modulator based on the thermooptic effect,” Opt. Lett. 19, 420–422 (1994). [PubMed]
  3. K. S. Lee, T. S. Lee, W. M. Kim, S. Cho, and S. Lee, “Pump-probe optical switching in prism-coupled Au:SiO2 nanocomposite waveguide film,” Appl. Phys. Lett. 91(14), 141905 (2007). [CrossRef]
  4. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004). [CrossRef] [PubMed]
  5. M. J. Potasek and Y. Yang, “Multiterabit-per-second all-optical switching in a nonlinear directional coupler,” IEEE J. Sel. Top. Quantum Electron. 8(3), 714–721 (2002). [CrossRef]
  6. H. W. Tan, H. M. van Driel, S. L. Schweizer, R. B. Wehrspohn, and U. Gösele, “Nonlinear optical tuning of a two-dimensional silicon photonic crystal,” Phys. Rev. B 70(20), 205110 (2004). [CrossRef]
  7. R. Kasahara, M. Yanagisawa, T. Goh, A. Sugita, A. Himeno, M. Yasu, and S. Matsui, “New structure of silica-based planar lightwave circuits for low-power thermooptic switch and its application to 8x8 optical matrix switch,” J. Lightwave Technol. 20(6), 993–1000 (2002). [CrossRef]
  8. J. Li, Q. X. Zhang, and A. Q. Liu, “Advanced fiber optical switches using deep RIE (DRIE) fabrication,” Sens. Actuators A Phys. 102(3), 286–295 (2003). [CrossRef]
  9. G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett. 74(22), 3338–3340 (1999). [CrossRef]
  10. J. Zhai, L. Qiu, J. Zhou, Y. Zhao, Y. Shen, Q. Ling, and M. Yang, “Study on the thermal properties of doped PMMA systems,” Adv. Mater. Opt. Electron. 10(1), 3–7 (2000). [CrossRef]
  11. R. A. O’Sullivan, K. W. McGregor, and J. F. Scott, “Thermal focusing and optical bistability in ferroelectrics,” J. Phys. Condens. Matter 13(12), R195–R234 (2001). [CrossRef]
  12. Y. Quiao, S. Orlov, D. Psaltis, and R. R. Neurgaonkar, “Electrical fixing of photorefractive holograms in Sr0.75 Ba0.25Nb2O6,” Opt. Lett. 18(12), 1004–1006 (1993). [CrossRef]
  13. D. Trivedi, P. Tayebati, and M. Tabat, “Measurement of large electro-optic coefficients in thin films of strontium barium niobate (Sr0.6Ba0.4Nb2O6),” Appl. Phys. Lett. 68(23), 3227–3229 (1996). [CrossRef]
  14. M. O. Ramírez, D. Jaque, L. E. Bausá, J. García Solé, and A. A. Kaminskii, “Coherent light generation from a Nd:SBN nonlinear laser crystal through its ferroelectric phase transition,” Phys. Rev. Lett. 95(26), 267401 (2005). [CrossRef]
  15. C. Jacinto, D. Jaque, E. Martín Rodríguez, and J. García Solé, “Optical distortions through phase transition in the Nd3+:SBN laser crystal,” Appl. Phys. Lett. 88(16), 161116 (2006). [CrossRef]
  16. M. Goulkov, T. Granzow, U. Dörfler, Th. Woike, M. Imlau, R. Pankrath, and W. Kleemann, “Temperature dependent determination of the linear electrooptic coefficient r(33) in Sr0.61Ba0.39Nb2O6 single crystals by means of light-induced scattering,” Opt. Commun. 218(1-3), 173–182 (2003). [CrossRef]
  17. Y. Y. Zhu, J. S. Fu, R. F. Xiao, and G. K. L. Wong, “Second harmonic generation in periodically domain-inverted Sr0.6Ba0.4Nb2O6 crystal plate,” Appl. Phys. Lett. 70(14), 1793–1795 (1997). [CrossRef]
  18. X. T. Li, P. Y. Du, H. Ye, C. L. Mak, and K. H. Wong, “Electro-optic properties of epitaxial Sr0.6Ba0.4Nb2O6 films grown on MgO substrates using LixNi2-xO buffer layer,” Appl. Phys., A Mater. Sci. Process. 92(2), 397–400 (2008). [CrossRef]
  19. W. C. Liu, D. Wu, A. D. Li, H. Q. Ling, Y. F. Tang, and N. B. Ming, “Annealing and doping effects on structure and optical properties of sol-gel derived ZrO2 thin films,” Appl. Surf. Sci. 191(1-4), 181–187 (2002). [CrossRef]
  20. R. Ulrich and R. Torge, “Measurement of thin-film parameters with a prism coupler,” Appl. Opt. 12(12), 2901–2908 (1973). [CrossRef] [PubMed]
  21. G. Burns and F. H. Dacol, “Crystalline ferroelectrics with glassy polarization behavior,” Phys. Rev. B 28(5), 2527–2530 (1983). [CrossRef]
  22. G. L. Wood, W. W. Clark, M. J. Miller, E. J. Sharp, G. J. Salamo, and R. R. Neurgaonkar, “Broad-band photorefractive properties and self-pumped phase conjugation in Ce-SBN-60,” IEEE J. Quantum Electron. 23(12), 2126–2135 (1987). [CrossRef]
  23. J. R. Oliver, R. R. Neurgaonkar, and L. E. Cross, “A thermodynamic phenomenology for ferroelectric tungsten bronze Sr0.6Ba0.4Nb2O6 (SBN:60),” J. Appl. Phys. 64(1), 37–47 (1988). [CrossRef]
  24. T. Granzow, Th. Woike, M. Wöhlecke, M. Imlau, and W. Kleemann, “Change from 3D-Ising to random field-Ising-model criticality in a uniaxial relaxor ferroelectric,” Phys. Rev. Lett. 92(6), 065701 (2004). [CrossRef] [PubMed]
  25. R. Blinc, A. Gregorovič, B. Zalar, R. Pirc, J. Seliger, W. Kleemann, S. G. Lushnikov, and R. Pankrath, “Nb-93 NMR of the random-field-dominated relaxor transition in pure and doped SBN,” Phys. Rev. B 64(13), 134109 (2001). [CrossRef]
  26. G. Ghosh, “Temperature dispersion of refractive indexes in some silicate fiber glasses,” IEEE Photon. Technol. Lett. 6(3), 431–433 (1994). [CrossRef]
  27. Y. Terui and S. Ando, “Anisotropy in thermo-optic coefficients of polyimide films formed on Si substrates,” Appl. Phys. Lett. 83(23), 4755–4757 (2003). [CrossRef]
  28. C. Cordero-Montalvo and K. Vedam, “Piezo- and thermo-optic behavior of LiTaO3,” J. Appl. Phys. 52(2), 944–947 (1981). [CrossRef]
  29. D. W. Rush, B. M. Dugan, and G. L. Burdge, “Temperature-dependent index-of-refraction changes in BaTiO3,” Opt. Lett. 16(17), 1295–1297 (1991). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited